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CIBERSORT analysis of TCGA 
and METABRIC identifies 
subgroups with better outcomes 
in triple negative breast cancer
Kelly E. Craven1, Yesim Gökmen‑Polar2 & Sunil S. Badve2,3,4*

Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative 
Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms 
underlying these immune cell differences are not well delineated. In this study, analysis of 
hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed 
to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the 
proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples 
with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T 
cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T 
cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, 
PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel 
mechanisms by which the cancer cells attract immune cells and by which they evade or dampen 
the immune system during the cancer immunoediting process. This study suggests that integration 
of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel 
therapeutic targets in TNBC cases.

Several studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast 
Cancer (TNBC) is associated with a better prognosis1–8. This finding is further supported by a recent pooled 
analysis of nine studies that found improved invasive disease free survival (iDFS), distant disease free survival 
(D-DFS), and overall survival (OS) with increasing amounts of either intratumoral or stromal lymphocytes in 
TNBC patients receiving adjuvant chemotherapy9. Some studies have attempted to further delineate the specific 
types of lymphocytes that confer this survival advantage. These have shown that higher counts of CD8 (genes: 
CD8A, CD8B) T cells are associated with a better prognosis in TNBC10–17. For example, Savas et al. used flow 
cytometry and single-cell RNA sequencing to show that CD8 T cells with memory T cell differentiation (CD103 
(gene: ITGAE) positive tissue-resident memory T cells) are associated with improved relapse-free and OS in 
TNBC patients and that this cell type provides better prognostication than CD8 expression alone18. Similarly, 
studies have shown better prognosis with CD3 (genes: CD3D, CD3E, CD3G) T cells13,17, CD4 (gene: CD4) T 
cells13,15, and activated T cells identified by expression of T-bet (gene: TBX21)19. One other type of T cell, the 
regulatory FOXP3 (gene: FOXP3) T cell, has been associated both with good13,20,21 and bad prognosis22 depend-
ing on the study. Other than these few markers, there are a lack of studies looking at additional immune sub-
populations in TNBC and their relation to outcomes like OS and disease free survival (DFS).

While most of these studies utilized immunohistochemistry, gene expression data often affords the oppor-
tunity to interrogate many more immune cell types. Gene expression signatures have been used to quantify the 
amount of lymphocyte infiltration in TNBC23,24, but only a few studies have used gene expression signatures to 
quantify specific immune cell types25–27. Even fewer studies have attempted to determine the molecular features 
of the cancer that are associated with the increased immune infiltrate or immune cell type28. Karn et al. found 
that TNBC tumors with high immune gene expression had lower clonal heterogeneity, fewer copy number 
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alterations, lower somatic mutations, and lower neoantigen loads, suggesting that the immune system eliminates 
some of the diversity seen in immune poor tumors28. However, a focus on individual alterations has been lacking.

CIBERSORT is a deconvolution method that characterizes the cell composition of complex tissue from their 
gene expression profiles29. It employs linear support vector regression (SVR), a machine learning approach, to 
deconvolute a mixture of gene expression. Its results have been shown to correlate well with flow cytometric 
analysis, and therefore, it has also been referred to as “digital cytometry”30. Although this technique has been 
applied to solid tumors including breast cancers31–34, its usage has been relatively limited.

While The Cancer Genome Atlas (TCGA) offers a significant amount of molecular data on TNBC tumors, 
often underscored with this data source is the availability of hematoxylin and eosin (H&E) images of the tumors. 
Therefore, we utilized the H&E images to identify TIL rich and TIL poor TNBC tumors, such that further 
molecular comparisons between the groups could be made. We also used gene expression data to further deline-
ate specific immune cell types and their relation to prognosis. An additional TNBC dataset, Molecular Taxonomy 
of Breast Cancer International Consortium (METABRIC), was also utilized to determine the reproducibility of 
our findings.

Results
Because previous clinical trials have shown an association between lymphocytic infiltrate and good prognosis in 
TNBC1,3–5, we sought to investigate the molecular mechanisms underlying these immune cell differences using 
the TNBC cases within TCGA (Table 1). Out of 133 TNBC cases with available survival data (Table S10), H&E 
images from 103 of the cases were scored as having < 1%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, 
or > 70% TILs by a pathologist. Using the TIL cut off for lymphocyte-predominant breast cancer (LPBC) used 
by Loi et al.9, we split the samples into two groups, those with > 30% TILs (n = 11) (Fig. 1a–c) or those with < 
30% TILs (n = 92) (Fig. 1d–f).

We observed no differences in OS (pvalue (p) = 0.69) (Figure S1a) or DFS (p = 0.69) (Figure S1b) using the 
log rank test. Similarly, when TILs were treated as a continuous variable, no differences in OS (hazard ratio (HR) 
0.80, 95% confidence interval (CI) 0.52–1.22, p = 0.294) or DFS (HR 0.88, 95% CI 0.60–1.28, p = 0.494) were 
observed using a univariate cox proportional hazards model (Table 2).

We hypothesized that differences in survival might only be seen if we focused the analysis on specific immune 
cell types instead of TILs in general. While immunohistochemistry (IHC) slides for TCGA samples are not a part 
of the dataset, 132 of the 133 TNBC cases do have RNA-Seq gene expression data. Therefore, the gene expression 

Figure 1.   Example H&E images of TCGA TNBC cases with > 30%. (a–c) or < 30% (d–f) TILs as scored by a 
pathologist. (a) TCGA-A2-A0CM. (b) TCGA-S3-AA10. (c) TCGA-EW-A1OV. (d) TCGA-LL-A740. (e) TCGA-
OL-A6VO. (f) TCGA-GI-A2C9. (a)–(f) Image captures made from TCGA image files opened with Aperio 
ImageScope 12.3.2.8013 (https​://www.leica​biosy​stems​.com/digit​al-patho​logy/manag​e/aperi​o-image​scope​/).

https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/
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information from these cases was used to quantify the amount of immune cell infiltrate in each sample by using 
an application called CIBERSORT, which has pre-identified gene signatures for different immune cell types 
including B cell subtypes, plasma cells, T cell subtypes, NK cells, monocytes, macrophage subtypes, dendritic cell 
subtypes, mast cell subtypes, eosinophils, and neutrophils (Figure S2). To determine the validity of CIBERSORT’s 
deconvolution method, we compared samples that had both H&E scored TILs and CIBERSORT scored TILs 
and determined the Spearman rank correlation coefficient to be 0.34 (p = 0.0004) (Fig. 2). Of the 22 immune 
cell types quantified by CIBERSORT, CD8 T cells and M1 macrophages were associated with improved OS while 
CD4 memory activated T cells were associated with improved DFS (Table 2) using a univariate cox proportional 
hazards model on a continuous scale. However, the confidence intervals were large due to the small sample size.

In order to perform further comparative molecular analysis, we needed to separate the samples into high and 
low groups for each significant cell type. We tried several different cut offs (Table S1), and only the CD8 T cells 
and CD4 memory activated T cells showed significance at several different cut offs, while the M1 macrophages 
did not show significance with any cut off for the OS analysis. Therefore, we decided to focus our analysis on 
the CD8 T cells and CD4 memory activated T cells. The distribution of CD8 T cells (Fig. 3a) or CD4 memory 
activated T cells (Fig. 3b) presented a wide range among the different TNBC cases, with many cases having a 
paucity of immune cells.

To separate the TNBC samples into two groups, high vs. low, based on the amount of CD8 T cell or CD4 
memory activated T cell infiltrate, a cut off of plus or minus 0.25 times the standard deviation was used for both 
cell types, disregarding those samples that fell in the middle, termed the medium group (Figs. 3 and S3). After 
separating the samples into these two groups for each cell type, Kaplan–Meier survival analysis demonstrated 

Table 1.   Characteristics of TCGA TNBC patients. Bold: pvalue < 0.05. TCGA: The Cancer Genome Atlas; 
TNBC: triple negative breast cancer; TILs: tumor infiltrating lymphocytes; p: pvalue; sd: standard deviation; 
*: Wilcoxon test; #: Fisher’s exact test; Y: Used in Fisher’s exact test; N: Not used for Fisher’s exact test; NA: 
missing data.

Characteristic

TNBC 
patients (n 
= 133)

TILs CD8 T cells (0.25 * sd) CD4 T cells (0.25 * sd) CD8/CD4 T cells (cluster analysis)

TILs > 30% 
(n = 11)

TILs < 30% 
(n = 92) p

High CD8 
T cells (n 
= 40)

Low CD8 
T cells (n 
= 71) p

High CD4 
memory 
activated 
T cells (n 
= 45)

Low CD4 
memory 
activated 
T cells (n 
= 72) p

High CD8/
high CD4 
(n = 33)

Low CD8/
low CD4 (n 
= 58) p

Mean age at 
pathologic 
diagnosis

54.7 51.6 55.1 0.47* 54.4 54.6 0.60* 53.7 56.2 0.46* 54.2 55.2 0.84*

Ethnicity 1.00# 0.59# 0.18# 0.75#

Caucasian 77 (58%) 6 (55%) 52 (57%) Y 24 (60%) 37 (52%) Y 27 (60%) 39 (54%) Y 19 (58%) 30 (52%) Y

African Ameri-
can 45 (34%) 4 (36%) 30 (33%) Y 14 (35%) 27 (38%) Y 12 (27%) 29 (40%) Y 11 (33%) 24 (41%) Y

NA 11 (8%) 1 (9%) 10 (11%) Y 2 (5%) 7 (10%) Y 6 (13%) 4 (6%) Y 3 (9%) 4 (7%) Y

Pathologic 
stage 0.43# 0.56# 0.02# 0.28#

I–II 11 (83%) 11 (100%) 73 (79%) Y 35 (88%) 57 (80%) Y 42 (93%) 55 (76%) Y 30 (91%) 45 (78%) Y

III–IV 20 (15%) 0 (0%) 16 (17%) Y 5 (13%) 12 (17%) Y 2 (4%) 16 (22%) Y 3 (9%) 11 (19%) Y

NA 3 (2%) 0 (0%) 3 (3%) Y 0 (0%) 2 (3%) Y 1 (2%) 1 (1%) Y 0 (0%) 2 (3%) Y

Menopause 0.43# 0.78# 0.73# 0.64#

Pre 35 (26%) 4 (36%) 21 (23%) Y 12 (30%) 18 (25%) Y 13 (29%) 16 (22%) Y 11 (33%) 15 (26%) Y

Post 82 (62%) 5 (45%) 59 (64%) Y 24 (60%) 43 (61%) Y 27 (60%) 46 (64%) Y 19 (58%) 34 (59%) Y

NA 16 (12%) 2 (18%) 12 (13%) Y 4 (10%) 10 (14%) Y 5 (11%) 10 (14%) Y 3 (9%) 9 (16%) Y

Table 2.   Prognostic value of immune cell types in TCGA TNBC patients (univariate) (continuous). Bold: 
pvalue < 0.05. TCGA: The Cancer Genome Atlas; TNBC: triple negative breast cancer; TILs: tumor infiltrating 
lymphocytes OS: overall survival; HR: hazard ratio; FDR: false discovery rate; DFS: disease free survival; CI: 
confidence interval; NA: not applicable.

Cell type OS HR OS 95% CI OS pvalue OS FDR DFS HR DFS 95% CI DFS pvalue DFS FDR

TILs (n = 103) 0.80 0.52 to 1.22 0.294 NA 0.88 0.60 to 1.28 0.494 NA

CD8 T cells (n = 
132) 0.0015 3.7e−06 to 0.58 0.033 0.26 0.060 0.0016 to 2.22 0.127 0.67

CD4 memory 
activated T cells (n 
= 132)

0.0000063 1.7e−11 to 2.26 0.067 0.28 0.0000031 5.0e−11 to 0.19 0.024 0.26

M1 macrophages (n 
= 132) 0.00084 1.1e−06 to 0.65 0.037 0.26 0.012 7.7e−05 to 1.89 0.087 0.61
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that the samples with a high CD8 T cell infiltrate had a better overall survival (p = 0.013, false discovery rate 
(FDR) = 0.24, log rank test) (Fig. 4a) with 5 year survival rates of 96.4% and 71.9% and 10 year survival rates of 
96.4% and 53.9% in the high vs. low groups, respectively (Table S2). Moreover, samples with a high CD4 memory 
activated T cell infiltrate had a better disease free survival (p = 0.034, FDR = 0.45, log rank test) (Fig. 4b) with 5 
year survival rates of 85.9% and 58.2% and 10 year survival rates of 57.3% and 58.2% in the high vs. low groups, 
respectively (Table S2). Splitting the samples into quartiles showed similar trends (Figure S4a,b), but did not 
meet the significance threshold.

Figure 2.   Correlation between H&E scored and CIBERSORT scored TILs in TCGA TNBC cases. Comparison 
of H&E scored and CIBERSORT scored TILs in TCGA TNBC cases (n = 103) showed a Spearman rank 
correlation coefficient of 0.34 with a pvalue of 0.0004. The CIBERSORT score consists of arbitrary units that 
reflect the absolute proportion of immune cells in a mixture. A higher score would indicate a higher proportion 
of immune cells. Image generated with R 4.0.2 (https​://www.R-proje​ct.org)35.

Figure 3.   Distribution of the proportion of CD8 T cells or CD4 memory activated T cells across the TCGA 
TNBC cases. A histogram of the quantity of (a) CD8 T cells or (b) CD4 memory activated T cells present across 
the different TCGA TNBC samples was plotted using data generated by CIBERSORT. CIBERSORT assigns a 
score of arbitrary units that reflects the absolute proportion of each cell type in a mixture. A higher score would 
indicate a higher proportion of that cell type. Vertical lines represent the cut off (± 0.25 * standard deviation) 
used to create the “high” and “low” groups. (a) and (b) Images generated with R 4.0.2 (https​://www.R-proje​
ct.org)35.

https://www.R-project.org
https://www.R-project.org
https://www.R-project.org
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The significance of the two group analysis of CD8 T cells for OS was retained in a multivariate cox propor-
tional hazards model (p = 0.033), but not the CD4 memory activated T cells for DFS (p = 0.32) (Table 3). This 
is likely due to correction for the pathologic stage by the model, as the low CD4 memory activated T cell group 
was biased towards more samples with a higher pathologic stage (p = 0.02)) (Table 1). However, the high and 
low CD8 T cell groups did not show a bias in any patient characteristic (Table 1).

After observing these results, we were curious if the samples with high CD8 T cells also tended to have high 
CD4 memory activated T cells or if they were mutually exclusive. To determine if the samples had high amounts 
of both T cell types or if the samples were uniquely enriched in only one T cell type, we did hierarchical clustering 
of the data (Figs. 5 and S5). Hierarchical clustering indicated that many samples with a high quantity of CD8 T 
cells also have a high quantity of CD4 memory activated T cells (Fig. 5, magenta cluster). Other clusters indicated 
that some samples are uniquely enriched in CD8 T cells (Fig. 5, green cluster) or CD4 memory activated T cells 
(Fig. 5, deep pink cluster), but not both cell types.

Some representative H&E images of samples identified as having a high quantity of T cells (both CD8 and 
CD4 memory activated) (Fig. 6a–c) or a low amount of T cells (both CD8 and CD4 memory activated) (Fig. 6d–f) 
are shown in Fig. 6.

To determine if one of the clusters might show an improved prognosis, clusters that had higher amounts of 
both T cell types (Fig. 5, magenta) or one T cell type (Fig. 5, green, deep pink) were compared individually with 
the cluster with minimal T cells of either type (Fig. 5, orange) by log rank test (Figures S3, S6). The cluster with 
higher amounts of both T cell types (Fig. 5, magenta) showed improved OS (Fig. 7, p = 0.037, FDR = 0.11), but 
not DFS (p = 0.079, FDR = 0.24) while the other individual clusters did not show an improvement in OS or DFS 
(Figure S6). The survival rates for the high CD8/high CD4 cluster vs. low CD8/low CD4 cluster were 95.5% and 
73.1% at 5 years and 95.5% and 54.8% at 10 years, respectively (Table S2). This significance for OS was retained 
in a multivariate cox proportional hazards model (p = 0.045), but only after backwards elimination of other 
insignificant covariates (Table 3). To explore whether CD4 memory activated T cells add any additional signifi-
cance once CD8 T cell information is already known, a likelihood ratio test was done comparing the CD8 T cell 
continuous model in Table 3 with a second model that differed only in its addition of a CD4 memory activated 
T cell covariate. This comparison produced a pvalue of 0.61, suggesting that the association with survival is 
primarily due to the CD8 T cells, and that the CD4 memory activated T cells do not add additional significance.

To further understand if there is an antigenic characteristic of the tumors that could be driving the differences 
in immune cell infiltrate, we decided to do a mutational analysis of the TCGA TNBC cases. Overall, looking at the 
top 34 gene mutations in the TNBC cases in general, the most frequently mutated genes are TP53 (61.4%), TTN 
(28.3%), MUC4 (18.9%), MT-CYB (12.6%), SPTA1 (11%), and USH2A (10.2%) (Fig. 8, top left and right). Several 
of these genes, such as TP53 (61.4%), PIK3CA (9.4%), USH2A (10.2%), MYO3A (1.6%), TTN (28.3%), PTEN 
(3.9%), and RB1 (3.1%), have been previously described in other TNBC whole genome or exome sequencing 

Figure 4.   Kaplan–Meier curves demonstrating improvements in OS or DFS in TCGA TNBC patients with 
high quantities of CD8 T cells or CD4 memory activated T cells in their tumor sample, respectively. (a) TCGA 
TNBC patients with a higher proportion of CD8 T cells in their tumor have a better OS (p = 0.013, FDR = 
0.24, log rank test) (survival rates high vs. low, 5 year: 96.4% and 71.9%, 10 year: 96.4% and 53.9%). (b) TCGA 
TNBC patients with a higher proportion of CD4 memory activated T cells in their tumor sample have a better 
DFS (p = 0.034, FDR = 0.66, log rank test) (survival rates high vs. low, 5 year: 85.9% and 58.2%, 10 year: 57.3% 
and 58.2%). (a) and (b) High and low cut offs of T cell infiltrate were chosen as quantities above and below 
0.25 times the standard deviation of the mean, respectively. (a) and (b) Images generated with R 4.0.2 (https​://
www.R-proje​ct.org)35.

https://www.R-project.org
https://www.R-project.org
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Table 3.   Prognostic value of immune cell types in TCGA TNBC (multivariate). Bold: pvalue < 0.05. TCGA: 
The Cancer Genome Atlas; TNBC: triple negative breast cancer; OS: overall survival; HR: hazard ratio; CI: 
confidence interval; DFS: disease free survival; sd: standard deviation.

Model
OS HR (95% CI) pvalue 
(continuous)

OS HR (95% CI) pvalue (high vs. 
low) (rows 1-5 and 6-10: 0.25 * 
sd) (rows 11-13: cluster analysis)

DFS HR (95% CI) pvalue 
(continuous)

DFS HR (95% CI) pvalue (high 
vs. low) (rows 1-5 and 6-10: 
0.25 * sd) (rows 11-13: cluster 
analysis)

CD8 T cells 0.000067 (2.2e−08 to 0.20)
0.019

0.19 (0.039–0.87)
0.033

0.067 (7.2e−04 to 6.22)
0.24

0.51 (0.21–1.22)
0.13

Pathologic stage 10.15 (3.51 to 29.35)
1.9e−05

9.25 (2.71–31.61)
0.00039

5.90 (2.73 to 12.77)
6.6e−06

4.95 (1.99–12.36)
0.00060

Age at pathologic diagnosis 0.91 (0.86 to 0.98)
0.0077

0.91 (0.85–0.98)
0.0084

0.95 (0.90 to 1.01)
0.083

0.94 (0.89–1.01)
0.070

Menopause status 2.55 (0.82 to 7.93)
0.11

3.16 (0.88–11.32)
0.077

1.74 (0.61 to 4.97)
0.30

1.77 (0.58–5.37)
0.31

Ethnicity 1.69 (0.50 to 5.71)
0.40

2.16 (0.51–9.20)
0.30

1.66 (0.58 to 4.73)
0.34

2.25 (0.71–7.18)
0.17

CD4 memory activated T cells
0.000047
(3.7e−12 to 579.37)
0.23

0.70 (0.21–2.34)
0.56

0.0000054
(4.27e−12 to 6.88)
0.091

0.61 (0.23–1.61)
0.32

Pathologic stage 5.98 (2.39 to 14.98)
0.00013

7.63 (2.36–24.72)
0.00070

5.21 (2.45 to 11.11)
0.000019

7.49 (2.72–20.65)
0.00010

Age at pathologic diagnosis 0.92 (0.86 to 0.99)
0.017

0.92 (0.85–1.00)
0.050

0.94 (0.89 to 1.00)
0.052

0.94 (0.88–1.00)
0.064

Menopause status 2.46 (0.70 to 8.64)
0.16

1.33 (0.37–4.71)
0.66

2.01 (0.67 to 6.02)
0.21

1.24 (0.41–3.74)
0.71

Ethnicity 2.34 (0.64 to 8.60)
0.20

1.93 (0.45–8.29)
0.38

1.53 (0.54 to 4.32)
0.42

1.31 (0.43–4.02)
0.64

CD8/CD4 (cluster analysis) 0.21 (0.045–0.97)
0.045

0.41 (0.16–1.07)
0.068

Pathologic stage 6.78 (2.31–19.96)
0.00051

4.46 (1.84–10.80)
0.00094

Age at pathologic diagnosis 0.95 (0.90–1.00)
0.053

0.97 (0.92–1.01)
0.14

Figure 5.   Hierarchical clustering of CD8 T cell and CD4 memory activated T cell quantities in TCGA TNBC 
samples. RNA sequencing (RNA-Seq) gene expression data was analyzed with CIBERSORT to quantify the 
amount of different T cells in the TCGA TNBC samples. Hierarchical clustering of these quantities after 
normalization is shown in the heatmap. Clusters of samples enriched in CD4 memory activated T cells (deep 
pink cluster), CD8 T cells (green cluster), both cell types (magenta cluster), or neither cell type (orange cluster) 
are represented. Image generated with R’s (4.0.2) (https​://www.R-proje​ct.org)35 gplots package (3.0.4) (https​://
CRAN.R-proje​ct.org/packa​ge=gplot​s)36.

https://www.R-project.org
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots
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studies (Fig. 8, bottom right)37,38. TNBC cases from TCGA also showed an average of 112.1 and a median of 77 
gene mutations per sample (Fig. 8, bottom left).

Next, we compared the mutation frequencies for all genes between the different groups we identified with 
improved prognosis. When the group with high CD8 T cells and CD4 memory activated T cells as identified 
by hierarchical clustering (Fig. 5, magenta) was compared to the cluster group with low amounts of these cells 
(Fig. 5, orange), 14 genes with significantly different mutation frequencies were identified (Fig. 9a, top) with 
the mutation frequency ranging from 9.1 to 12.1% in the high group compared to 0% in the low group. For the 
high vs. low CD8 T cell groups, we found 19 genes with significantly different mutation frequencies (Figure 9b, 
top). For 17 of these genes, the mutation frequency ranged between 7.7 and 12.8% in the high group compared 
to 0–1.5% in the low group.

As expected, there was some overlap in the genes identified in the two different comparisons, with phospho-
inositide kinase, FYVE-type zinc finger containing (PIKFYVE), immunoglobulin heavy variable 2–70 (IGHV2-
70), autophagy related 2B (ATG2B), zinc finger protein 697 (ZNF697), syntabulin (SYBU), Ral GTPase activat-
ing protein catalytic alpha subunit 2 (RALGAPA2), protein phosphatase 1 regulatory subunit 3F (PPP1R3F), 
and histone cluster 1 H2B family member c (HIST1H2BC) more frequently mutated in the high T cell groups 
compared to the corresponding low groups. However, two genes, golgin B1 (GOLGB1) and HECT, UBA and 
WWE domain containing E3 ubiquitin protein ligase 1 (HUWE1), did not follow this trend, with no mutations 
in these genes in the high CD8 group, but mutation frequencies of 11.9% and 10.4% in the low CD8 cases, 
respectively. While multiple testing correction did not retain any of the significant genes, the goal at this stage 
of the analysis is exploratory and not to control the number of false positives. Since studies have shown better 
responses to checkpoint inhibitors when tumor samples possess a higher mutational burden39, we also compared 
the mutation counts between the different high and low groups (Fig. 9a bottom, 9b bottom) and no significant 
differences were seen.

TNBC is known to be molecularly heterogeneous40, and previous studies have utilized gene expression infor-
mation to further subclassify TNBC samples into various subgroups, such as basal-like (BL1 and BL2), immu-
nomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), and luminal androgen receptor (LAR)41. 
Because the mutation frequencies that we observed did not comprise more than 12.8% of the samples of a group, 

Figure 6.   Example H&E images of TCGA TNBC cases with a high quantity of T cells (CD8 and CD4 memory 
activated) (a–c) or a low quantity of T cells (CD8 and CD4 memory activated) (d–f) as scored by RNA-Seq 
gene expression analysis by CIBERSORT. (a) TCGA-AO-A128. (b) TCGA-GM-A2DI. (c) TCGA-OL-A66I. (d) 
TCGA-A7-A26I. (e) TCGA-BH-A0AV. (f) TCGA-OL-A5RW. (a)–(f) Image captures made from TCGA image 
files opened with Aperio ImageScope 12.3.2.8013 (https​://www.leica​biosy​stems​.com/digit​al-patho​logy/manag​e/
aperi​o-image​scope​/).

https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/
https://www.leicabiosystems.com/digital-pathology/manage/aperio-imagescope/
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we decided to subclassify our TNBC samples using a web developed tool called TNBCtype42 to determine if sam-
ples with the same mutated gene belong to the same subtype within a high or low group. We found that samples 
with the same mutated genes within a high or low group did not belong to the same TNBC subtype (Tables S3 
and S4), but analysis of the high and low groups overall showed that the high groups (CD8 T cells or CD8 T cells 
combined with CD4 memory activated T cells) were enriched with the immunomodulatory subtype while the 
corresponding low groups were enriched in the mesenchymal subtype (Table S5).

Lastly, to see if some of these findings would replicate in another dataset, we identified an additional 199 
TNBC cases (Tables 4 and S11) from the METABRIC dataset43,44 and subjected 196 of them with available OS 
and gene expression microarray data to CIBERSORT analysis (Figure S7). Of the 22 interrogated immune cell 
types, only gamma delta T cells were associated with improved OS by a univariate cox proportional hazards 
model on a continuous scale, while CD8 T cells, CD4 Memory Activated T Cells, and M1 macrophages were 
not associated with improved OS (Table 5). While many patient demographics were similar between the TCGA 
and METABRIC datasets (Table S6), more patients in TCGA received chemotherapy compared to METABRIC 
(77% vs. 59%, respectively) and less patients in TCGA had positive lymph nodes compared to METABRIC (37% 
vs. 50%, respectively).

The distribution of CD8 T cells (Figure S8a) or gamma delta T cells (Figure S8b) among the different META-
BRIC TNBC cases was variable, with many cases having a paucity of immune cells. Using a strict cut off of plus 
or minus 0.25 times the standard deviation to separate the samples into high and low groups recapitulated what 
was seen in the univariate analysis such that samples with a high CD8 T cell infiltrate did not show a better overall 
survival (p = 0.98, FDR = 0.98, log rank test) (Fig. 10a) while samples with a high gamma delta T cell infiltrate 
did have a better OS (p = 0.0059, FDR = 0.12, log rank test) (Fig. 10b, Table S7). For the CD8 T cells, the 5 year 
survival rate was 66.2% and 63.5%, the 7 year survival rate was 62.9% and 53.9%, and the 10 year survival rate 
was 55.6% and 50.3% in the high and low groups, respectively (Table S8). For the gamma delta T cells, the 5 year 
survival rate was 73.9% and 56.6%, the 7 year survival rate was 72.3% and 48.0%, and the 10 year survival rate was 
67.3% and 42.0% in the high and low groups, respectively (Table S8). Splitting the samples into quartiles showed 
similar trends (Figure S9a,b), but the gamma delta T cell group did not quite cross the significance threshold (p 
= 0.052, FDR = 0.16, log rank test).

Subtype analysis of the METABRIC TNBC samples reproduced what was seen in the TCGA analysis with a 
high CD8 T cell group enriched in the immunomodulatory subtype and the low group enriched in the mesen-
chymal subtype (Table S9). While the high gamma delta T cell group was not enriched in any subtype, the low 
gamma delta T cell group was enriched in the mesenchymal subtype (Table S9).

Figure 7.   Kaplan–Meier curve demonstrating improvements in OS in TCGA TNBC patients with high 
quantities of CD8 T cells and CD4 memory activated T cells in their tumor sample. TCGA TNBC patients with 
a higher amount of CD8 T cells and CD4 memory activated T cells in their tumor as compared to samples with 
a lower amount of both these cell types have a better OS (p = 0.037, FDR = 0.11, log rank test) (survival rates 
high vs. low, 5 year: 95.5% and 73.1%, 10 year: 95.5% and 54.8%). The high and low groups were identified 
according to the hierarchical clustering analysis in Fig. 5. Image generated with R 4.0.2 (https​://www.R-proje​
ct.org)35.

https://www.R-project.org
https://www.R-project.org
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Discussion
Most clinical trials evaluating the relationship of TILs to prognosis in TNBC have focused on sub-classifying 
the TILs into intratumoral vs. stromal TILs1,3–5, and these studies generally have observed a survival or relapse 
benefit when the TILs were evaluated on a continuous scale, such that each 10% increase in TILs is associated 
with a 11–19% decrease in risk of death or relapse1,3–6. Some studies would also utilize a categorical variable of 
lymphocyte amount, often 50% (termed LPBC), so that specific survival estimates could be reported1,3,5,6. In 
the most recent pooled analysis by Loi et al., stromal TILs (sTILs) were primarily focused on due to their better 
reproducibility, and the LPBC cut off was set at 30%9. In our study, we were unable to reproduce these observa-
tions either on the continuous or categorical scale using H&E scored images. We assumed this was because our 
study was under-powered with only ~130 samples, 103 of which were used for the H&E analysis. Most of these 
clinical studies analyzed between 250 and 650 samples1,3,5,6 with the exception of Loi et al.4, which only looked 
at about 130 samples and thus, they were unable to confirm an association between TILs and OS in that study. 
Similarly, Park et al. also did not observe an association between TILs and prognosis with only ~120 samples45. 
Lastly, we must consider that survival data in TCGA is not as robust as it would be in a clinical trial.

After we considered that the effect of individual immune cell types might still be substantial enough to show a 
prognostic benefit in the TCGA dataset, CIBERSORT analysis of gene expression data demonstrated a better OS 

Figure 8.   Top 34 gene mutations in TCGA TNBC cases. (Top left and right) Mutational analysis of the TNBC 
cases in TCGA identifies TP53 (61.4%), TTN (28.3%), MUC4 (18.9%), MT-CYB (12.6%), SPTA1 (11%), and 
USH2A (10.2%) as the most frequently mutated genes. (Bottom left) Median and mean mutation count are 77 
and 112.1, respectively. (Bottom right) Mutation frequencies of several genes in TNBC as determined by this 
study (TCGA) or other whole genome or exome sequencing studies (Ref 1 =37, Ref 2 =38). (Top left and right, 
Bottom left) Images generated with R 4.0.2 (https​://www.R-proje​ct.org)35. (Bottom right) Image generated with 
Adobe Photoshop CC 2018 (https​://www.adobe​.com).

https://www.R-project.org
https://www.adobe.com
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Figure 9.   Genes with significantly different mutation frequencies between TCGA TNBC samples with high 
or low T cells (CD8/CD4 memory activated or CD8). (a, top) 14 genes show significantly different mutation 
frequencies (p < 0.05, Fisher’s exact test) between the group enriched in both CD8 T cells and CD4 memory 
activated T cells as compared to the group low in these T cells. (a, bottom) Mutation counts were similar 
between the two groups. (b, top) 19 genes show significantly different mutation frequencies (p < 0.05, Fisher’s 
exact test) between the high and low CD8 T cell groups. (b, bottom) Mutation counts were similar between the 
high and low CD8 T cell groups. (a) and (b) Images generated with R 4.0.2 (https​://www.R-proje​ct.org)35.

Table 4.   Characteristics of METABRIC TNBC patients. METABRIC: Molecular Taxonomy of Breast Cancer 
International Consortium; TNBC: triple negative breast cancer; p: pvalue; sd: standard deviation; *: Wilcoxon 
test; #: Fisher’s exact test; Y: Used in Fisher’s exact test; N: Not used for Fisher’s exact test; NA: missing data.

Characteristic TNBC patients (n = 199)

CD8 T cells (0.25 * sd) T cells gamma delta (0.25 * sd)

High CD8 T cells (n 
= 65)

Low CD8 T cells (n = 
101) p

High T cells gamma 
delta (n = 66)

Low T cells gamma delta 
(n = 103) p

Mean age at pathologic 
diagnosis 53.9 53.6 54.7 0.77* 53.0 54.2 0.75*

Tumor stage 0.96# 0.93#

I–II 129 (65%) 42 (65%) 67 (66%) Y 44 (67%) 65 (63%) Y

III–IV 12 (6%) 4 (6%) 7 (7%) Y 4 (6%) 6 (6%) Y

NA 58 (29%) 19 (29%) 27 (27%) Y 18 (27%) 32 (31%) Y

Inferred menopause 0.87# 0.97#

Pre 82 (41%) 28 (43%) 42 (42%) Y 27 (41%) 43 (42%) Y

Post 117 (59%) 37 (57%) 59 (58%) Y 39 (59%) 60 (58%) Y

https://www.R-project.org
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in those TNBC samples with a higher proportion of CD8 T cells. Additionally, hierarchical clustering identified 
a subgroup enriched in both CD8 T cells and CD4 memory activated T cells that showed improved OS, though 
a likelihood ratio test comparing different multivariate models suggests that CD8 T cells mostly contribute to 
this effect. This is concordant with previous studies that have used immunohistochemistry to associate increased 
CD8 T cells10–17 or CD4 T cells13,15 with good prognosis in TNBC. CIBERSORT interrogates three types of CD4 
T cells: naive, memory resting, and memory activated. The existence of a memory T cell suggests that the T cell 
has previously been exposed to an antigen and has been activated46. Cell surface markers that can be used to iden-
tify memory T cells include high levels of CD44 (gene: CD44), expression of the CD45 (gene: PTPRC) isoform 
CD45RO (as opposed to the CD45RA isoform in naive cells), and downregulation of CD62L (gene: SELL)46,47.

In the process of cancer immunoediting, cancer cells and the immune system go through three phases: 
elimination, equilibrium, and escape48. In the elimination phase, an innate and adaptive immune response 
(characterized by the propagation of CD4 and CD8 T cells by tumor antigens) work to protect the host against a 
developing tumor48. In the equilibrium phase, an adaptive immune system prevents tumor cell outgrowth, but it 
may also promote the acquisition of immunoevasive mutations48. In the escape phase, tumor cells evade immune 
recognition and destruction through many different mechanisms48. Therefore, tumors with higher intratumoral 
immune responses with ongoing cancer immunoediting have been found to have better prognosis48. Tumors 
that are more likely to respond to cancer immunoediting include those with a higher mutational burden as they 
are more likely to express immunogenic neoantigens that can be recognized by T cells49. This is also why tumors 
with high mutational burdens have shown better response rates with immune checkpoint inhibitors39.

Breast cancers have a low mutation rate when compared with other solid tumors50,51, but TNBC is known to 
have the highest median mutation rate among breast cancer subtypes, followed next by HER2-positive tumors39. 

Table 5.   Prognostic value of immune cell types in METABRIC TNBC (univariate) (continuous). Bold: pvalue 
< 0.05. METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; TNBC: triple negative 
breast cancer; OS: overall survival; HR: hazard ratio; FDR: false discovery rate; CI: confidence interval.

Cell type OS HR OS 95% CI OS pvalue OS FDR

CD8 T cells (n = 196) 1.081 0.11–10.89 0.95 1.00

CD4 memory activated T cells (n = 196) 0.091 0.00049–16.98 0.37 0.74

M1 macrophages (n = 196) 0.16 0.013–1.97 0.15 0.59

T cells gamma delta (n = 196) 0.0089 0.00016–0.50 0.02 0.48

Figure 10.   Kaplan–Meier curves demonstrating improvements in OS in METABRIC TNBC patients with 
high quantities of gamma delta T cells in their tumor sample. (a) METABRIC TNBC patients with a higher 
proportion of CD8 T cells in their tumor do not have a better OS (p = 0.98, FDR = 0.98, log rank test) (survival 
rates high vs. low, 5 year: 66.2% and 63.5%, 10 year: 55.6% and 50.3%). (b) METABRIC TNBC patients with a 
higher proportion of gamma delta T cells in their tumor sample have a better OS (p = 0.0059, FDR = 0.12, log 
rank test) (survival rates high vs. low, 5 year: 73.9% and 56.6%, 10 year: 67.3% and 42.0%). (a) and (b) High and 
low cut offs of T cell infiltrate were chosen as quantities above and below 0.25 times the standard deviation of 
the mean, respectively. (a) and (b) Images generated with R 4.0.2 (https​://www.R-proje​ct.org)35.

https://www.R-project.org
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This is one possible reason why TILs are more commonly found in TNBC and HER2-positive breast cancers51. 
When comparing TIL rich with TIL poor samples within a breast cancer subtype, one might also expect a higher 
mutational burden in the TIL rich samples as compared to the TIL poor samples. However, we did not find any 
significant difference in median mutation count when comparing TNBC tumors with high and low amounts of 
both CD8 T cells and CD4 memory activated T cells or CD8 T cells alone. Karn et al. actually observed a lower 
mutational burden in TNBC TIL rich samples as compared to TIL poor samples, and they suggested that this 
could be due to the elimination process removing immunogenic clones and lowering the clonal heterogeneity28.

To better understand the mutational differences in TNBC that might contribute to higher intratumoral 
immune responses or to reduced immunogenicity and escape, we looked for genes that were frequently mutated 
in the TIL rich group as compared to the TIL poor group or visa versa, focusing specifically on CD8 T cells or 
the combination of CD8 T cells with CD4 memory activated T cells. Mutational frequency differences typically 
ranged from 0% in one group to 7.7–12.8% in the other group. While it would be more convincing to see even 
higher mutational frequencies within a group, TNBC is known to be molecularly heterogeneous40. TNBC sub-
type analysis did not show samples within a high or low group with similarly mutated genes to be of the same 
subtype, but the high CD8 T cell or CD8 T cell combined with CD4 memory activated T cell groups were found 
to be enriched in the immunomodulatory subtype while their corresponding low groups were enriched in the 
mesenchymal subtype. This finding also repeated in the high and low CD8 T cell groups of the METABRIC 
TNBC samples. Since the immunomodulatory subtype is defined by immune cell signaling and processes, this 
association with the high immune groups makes sense. The enrichment of the mesenchymal subtype by the low 
immune groups, including the METABRIC TNBC low gamma delta T cell group, is interesting and may suggest 
that active pathways in this subtype may be correlated with a low immune cell infiltrate. The mesenchymal group 
is defined by pathways involved in cell motility, extracellular matrix receptor interaction, and cell differentiation 
pathways (such as Wnt, ALK, and TGF-beta)41.

Depending on the tumor’s current phase of cancer immunoediting, the mutations we observe in the high 
TIL group could function by increasing inflammation (elimination phase), by dampening the immune system 
(equilibrium or escape phases), or by allowing the cancer cells to evade the immune system (equilibrium or 
escape phases). Therefore, we next explored some of the known roles of the mutated genes that were identified 
in our analysis on the immune system regardless as to whether it was activating or inhibitory. ATG2B, which was 
more frequently mutated in the high CD8 T cell group and the group enriched in both T cell types, produces a 
gene product involved in autophagy, and its downregulation by a microRNA has been shown to be associated 
with an increased inflammatory response in Crohn’s disease52. Likewise, a decrease in the protein produced by 
HIST1H2BC, which can act as an antimicrobial peptide53, has been shown to augment the ability of TNF-alpha 
(gene: TNF) to upregulate inflammation associated genes54. Therefore, mutations in these genes could play a 
role in the increased inflammatory infiltrate observed in the high CD8 T cell group and the group enriched in 
both T cell types (Fig. 9a,b).

Polycystin 1, transient receptor potential channel interacting (PKD1), which was more frequently mutated 
in the group enriched in both T cell types (Fig. 9a), has been shown to play a role in the inflammatory response 
following toll like receptor 2 (TLR2), toll like receptor 4 (TLR4), or toll like receptor 5 (TLR5) activation55. 
PIKFYVE, frequently mutated in both the high T cell groups (Fig. 9a,b), and toll like receptor 3 (TLR3), fre-
quently mutated in the high CD8 T cell group (Fig. 9b), have both been implicated in the production of type I 
interferons56–58. Studies have also shown that TLR3 is expressed on cancer cells and its activation leads to recruit-
ment of different leukocyte subpopulations59. Notch receptor 3 (NOTCH3) was more frequently mutated in the 
high CD8 T cell group (Fig. 9b); in NOTCH3 deficient mice following tubular kidney injury, monocytic cell 
infiltration was shown to be reduced, likely due to abrogated chemokine synthesis60. Thus, mutations in these 
genes might lead to a reduced inflammatory response as the tumor evolves.

CREB binding protein (CREBBP), frequently mutated in the group enriched in both T cell types (Fig. 9a), has 
been implicated in the inflammatory response61,62, the control of MHC-II expression63,64, and the transactivation 
of the non-classical MHC-I molecule, HLA-G65. While MHC-II molecules are typically expressed by professional 
antigen-presenting cells, tumors have also been shown to also express them, which may lead to their increased 
recognition by the immune system66. Consequently, mutations in this gene might lead to reduced MHC expres-
sion and immune evasion by the cancer cells.

Of interest, mutational data analysis of CD8 immune-cold tumors showed HUWE1 and GOLGB1 mutations 
to be present only in “cold” tumors (Fig. 9b). Prior independent research shows that HUWE1 plays an impor-
tant role in cancer tumorigenesis and metastasis, including breast cancer67. HUWE1 is a multifunction protein 
that affects several hallmarks of cancer including proliferation/differentiation, DNA repair, stress response and 
apoptosis pathways. Its substrates include key regulators of apoptosis, proliferation and differentiation, DNA 
repair, and stress response. Chen et al. have shown that in TP53-null cells, p14ARF (gene: CDKN2A) induces 
p53-independent growth suppression by inhibiting HUWE1. In contrast, in TP53 wild type cells, HUWE1 
directly binds to and ubiquitinates p53, which suppresses p53-induced apoptosis68. Similar opposing effects of 
ER beta (gene: ESR2) based on mutated and wild type TP53 have been recently described69,70. Furthermore, one 
of the major substrates of HUWE1 is the Myc (gene: MYC) proto-oncogene that can serve as a transcription 
activator or repressor based on the partners in its transcription complex. Myc-Max complex activates transcrip-
tion of growth-promoting genes, whereas Myc-Max-Miz1 complex represses transcription through Miz1 (gene: 
ZBTB17), p300 histone acetyltransferase (gene: EP300) and DNA methyltransferases, DNMT3A and DNMT3B. 
Another substrate, Miz1, a zinc-finger transcription factor, binds and regulates the expression of several genes, 
including BCL271, CDKN2B72, CDKN1A73. CDC6, cell division cycle 6, also a HUWE1 substrate, is a protein 
essential for the initiation of DNA replication. This protein functions as a regulator at the early steps of DNA 
replication.
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Chen et al. have documented that knockdown of HUWE1 in TNBC cells (TP53 stable and mutant cell lines) 
was associated with growth arrest, confirming that HUWE1 functions both in TP53-dependent and independent 
manner74. Furthermore, Di Fiore’s group75 documented that lack of HUWE1 mRNA expression is associated with 
poor prognosis in (all subtypes) breast cancer (pvalue < 0.02) using in situ hybridization (ISH) in two cohorts 
(each ~450 patients)75.

GOLGB1 is believed to play a role in endoplasmic reticulum and golgi traffic76, and knockdown of this gene 
has been shown to lead to abnormal glycosylation in prostate cancer cells77. Abnormal glycosylation is a known 
hallmark of cancer78 which has been observed in breast cancer79, and studies have suggested that abnormal glyco-
sylation might play a role in immune evasion80. Perhaps the presence of this mutation early on might contribute 
to reduced recognition of the cancer cells by the immune system, promoting a low inflammatory environment 
in the low CD8 T cell group. Overall, identification of these mutations suggests novel mechanisms by which 
the cancer cells initially attract immune cells, and also novel mechanisms by which they evade or dampen the 
immune system as they evolve through the cancer immunoediting process.

Unfortunately, the association between CD8 T cells or CD8 T cells in combination with CD4 memory acti-
vated T cells and survival outcomes in the TCGA dataset did not reproduce in the analysis of the METABRIC 
dataset. It is not clear why this is the case, as there is supporting evidence for an association between increased 
CD8 T cells10–17 or CD4 T cells13,15 and good prognosis in TNBC in several previous studies. One possible 
explanation might involve timing, as the TCGA dataset had about 8 years of outcome data while METABRIC 
had closer to 25 years. For the METABRIC dataset, a bump in the survival curve for the high CD8 T cell group 
was observed at about the 7 year mark (Fig. 10a) with a 62.9% survival rate compared to a 53.9% survival rate 
in the high vs. low group, respectively, whereas the TCGA 7 year survival rates were 96.4% and 71.9%, respec-
tively. Moreover, since the start of this study, additional deconvolution methods have been developed81,82, some 
of which have identified possible “spillover” between different cell types, such that there may be limitations in 
CIBERSORT’s ability to differentiate between similar cell types such as CD8 T cells and gamma delta T cells83. 
While most gamma delta T cells do not express CD8 or CD4, up to 30% can express CD884. These new deconvo-
lution methods aim to reduce dependencies between such closely related cell types. Other possible explanations 
might involve differing patient demographics (Table S6) or differing technologies for detecting gene expression, 
as TCGA used RNA-Seq while METABRIC used microarrays.

The additional finding in the METABRIC dataset of an association of gamma delta T cells with better out-
comes in TNBC has recently been reported in a much smaller cohort of 11 patients85, and other studies have 
identified such an association with other breast cancer subtypes33,86. In vitro or in vivo studies have also shown 
that gamma delta T cells can be cytotoxic to TNBC cell lines or human xenograft models87–89. However, other 
studies have shown the opposite finding, that gamma delta T cells can be associated with worse outcomes in 
breast cancer90, or that they have an immunosuppressive effect that can lead to breast tumor progression in vitro 
or in vivo91,92. Therefore, additional studies are warranted, especially those specific to TNBC or gamma delta 
subtypes.

While our study focused on understanding the mutational differences between TNBC tumors with high or 
low immune cell infiltrate and their possible role in influencing the immune microenvironment, other studies 
have focused on mutations in TNBC in the context of their ability to produce tumor antigens39. Identification 
of neoantigens holds promise for the use of adoptive cell transfer therapy that directly targets the immunogenic 
mutations93. To date, several immune checkpoint inhibitor trials have been conducted in TNBC, either as a mono-
therapy or combined with chemotherapy, with modest response rates observed94. Because immune checkpoint 
inhibitors rarely work in tumors devoid of CD8 T cells94, it is important to develop ways in which immune cells 
can be increased within the tumor. Further study of these genes and T cell subtypes is warranted in order to 
identify ways to augment the immune system or to overcome the immunosuppressive tumor microenvironment 
in TNBC and lead to better anti-tumor responses.

Methods
TCGA breast cancer data was downloaded from the genomic data commons (GDC) data portal and legacy 
archive on May 19th and 20th, 2017. METABRIC breast cancer data was downloaded from cBioPortal95,96 on 
September 2nd, 2020.

Selection of TNBC cases.  TCGA​.  Clinical information on estrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 (HER2) status was obtained from the clinical biospeci-
men core resource (BCR) XML files. Out of 1097 files, 220 had a “Negative” ER status (breast_carcinoma_es-
trogen_receptor_status) and a “Negative” PR status (breast_carcinoma_progesterone_receptor_status). Out of 
these files, 10 cases with a “Positive” HER2 fluorescence in  situ hybridization (FISH) result (lab_procedure_
her2_neu_in_situ_hybrid_outcome_type) were removed, leaving 210 cases. For the remaining cases, they were 
kept if one of the following was true: (1) the HER2 FISH status was “Negative” and the IHC status (lab_proce-
dure_her2_neu_immunohistochemistry_receptor_status) was “Negative,” “Equivocal,” “Indeterminate,” or not 
available OR (2) the HER2 IHC status (lab_procedure_her2_neu_immunohistochemistry_receptor_status) was 
“Negative” and the reported IHC level (her2_immunohistochemistry_level_result) was 0, 1+, or not available. 
This resulted in 157 TNBC cases. Of these cases, only 133 were of the histologic type “Infiltrating Ductal Carci-
noma” (Table S10).

Of the 133 cases, 132 had associated RNA-Seq gene expression data (TCGA-AR-A0U1 was the one case 
without), and 127 had mutations reported in the maf file (TCGA-A8-A07C, TCGA-AO-A129, TCGA-AR-A0U4, 
TCGA-BH-A0E6, TCGA-D8-A27H, TCGA-EW-A1OW were the cases without).
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METABRIC.  Clinical information was obtained from the data_clinical_patient.txt and data_clinical_sample.
txt files. The “patient” file contained 2509 rows which was filtered to 350 rows by selecting those cases with a 
“Negative” ER_IHC, a “Ductal/NST” HISTOLOGICAL_SUBTYPE, and no “GAIN” in HER2_SNP6. Similarly, 
the “sample” file contained 2509 rows which was filtered to 277 samples associated with 277 unique patients by 
selecting those cases with a “Negative” ER_STATUS, a “Negative” PR_STATUS, a “Negative” HER2_STATUS, 
and a BREAST_CANCER_TYPE_DETAILED of “Breast Invasive Ductal Carcinoma.” Merging of the two files 
resulted in 199 cases that were present in both files.

Of the 199 cases, 196 had associated microarray (Illumina Human v3 microarray) gene expression informa-
tion in the data_expression_median.txt file represented as log intensity levels.

H&E scored TILs.  TCGA​.  Out of 133 TNBC cases with available survival data, H&E images from 103 of 
the cases were scored as having < 1%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, or > 70% TILs by a 
pathologist according to published international guidelines97,98.

Survival data.  TCGA​.  For the 133 cases, survival information was obtained from the clinical BCR XML 
files. For overall survival, any deaths were recorded as events while the latest known follow up date was used for 
censored observations. For disease free progression, deaths or new tumor events that were not new primaries 
were counted as events, while the latest known follow up date was used for censored observations.

METABRIC.  For the 196 cases, overall survival information was provided in the data_clinical_patient.txt file. 
Any deaths were flagged as events while censored observations included those where the person was still living. 
No DFS data was available for METABRIC.

Patient characteristics.  TCGA​.  For the 133 TNBC cases, patient characteristics were obtained from the 
clinical BCR XML files. Some groups with very small numbers were combined with the NA group (missing 
data) to avoid infinite confidence intervals during the cox proportional hazards analysis. These changes include 
the following: for ethnicity, 6 Asian samples were recoded as NA and for menopause status, 4 peri-menopausal 
and 2 indeterminate samples were recoded as NA. The patient characteristics of the different T cell groups were 
then compared using a Wilcoxon (age at pathologic diagnosis) or Fisher’s exact test (ethnicity, pathologic stage, 
menopause status).

METABRIC.  For the 199 TNBC cases, patient characteristics were obtained from the data_clinical_patient.txt 
file. The patient characteristics of the different T cell groups were compared using a Wilcoxon (age at diagnosis) 
or Fisher’s exact test (tumor stage, inferred menopause).

TCGA vs. METABRIC.  For the 133 TCGA TNBC cases, patients with chemotherapy drug names listed under 
the drug_name field were considered to have received chemotherapy while those with no entry in this field were 
considered to be of unknown status/not to have received chemotherapy. Patients with a pathologic N stage of N0 
(to include N0 i+) were considered to have negative lymph nodes, while patients with an N stage of N1 or above 
were considered to have positive lymph nodes.

For the 199 METABRIC TNBC cases, patients with or without chemotherapy were indicated in the CHEMO-
THERAPY field. Patients with LYMPH_NODES_EXAMINED_POSITIVE equaling 0 were considered to have 
negative lymph nodes while patients with LYMPH_NODES_EXAMINED_POSITIVE greater than 0 were con-
sidered to have positive lymph nodes.

The patient characteristics of the different datasets were then compared using a Wilcoxon (age at pathologic 
diagnosis) or Fisher’s exact test (ethnicity, pathologic stage, menopause status, chemotherapy, positive lymph 
node). Not applicable (NA) groups were excluded for all the Fisher’s exact tests (except chemotherapy due to 
how the data were encoded in TCGA) due to differing reasons for missing data across the different studies.

Gene expression data.  TCGA​.  For the 132 cases with RNA-Seq gene expression data, “Primary Tumor” 
gene expression files with FPKM expression values associated with 60,483 ensembl ids were available. These 
values were combined into a single file, and the ensembl ids were associated with their respective HUGO gene 
symbols using the R 4.0.235 biomaRt library99,100. 36,184 ensembl gene ids were associated with 36,169 HUGO 
gene symbols, with some ensembl gene ids mapping to multiple HUGO gene symbols and some HUGO gene 
symbols mapping to multiple ensembl gene ids. All records without an associated HUGO gene symbol were 
removed, resulting in a file with 36,218 rows of data, with some redundant HUGO gene symbols.

METABRIC.  For the 196 cases with gene expression data, the log2 intensity values were already associated 
with 24,368 HUGO gene symbols as the Illumina probeset to HUGO gene symbol mapping was already done 
by cBioPortal.

Immune cell analysis.  TCGA​.  CIBERSORT was used for the immune cell analysis of the TCGA gene 
expression data29. Of the available gene expression values provided by TCGA, FPKM values were used due to 
their superiority for deconvolution analysis101. Because the ensembl to HUGO gene symbol mapping resulted in 
redundant rows, CIBERSORT will automatically choose the record with the highest mean expression across the 
mixtures during analysis. The created gene expression file with the 132 cases was uploaded to CIBERSORT as a 
mixture file, and CIBERSORT was run with the following options: relative and absolute modes together, LM22 
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signature gene file, 100 permutations, and quantile normalization disabled. 100 permutations were used as the 
recommended minimum, but the use of 1000 permutations showed no change in the returned absolute propor-
tion of each cell type.

METABRIC.  CIBERSORT was used for the immune cell analysis of the METABRIC gene expression data29. Of 
the log2 intensity values provided by cBioPortal, the log space was reversed by taking 2 raised to the log2 inten-
sity value for all entries as CIBERSORT requires non-log linear space. The created gene expression file with the 
196 cases was uploaded to CIBERSORT as a mixture file, and CIBERSORT was run with the following options: 
relative and absolute modes together, LM22 signature gene file, 100 permutations, and quantile normalization 
disabled. 100 permutations were used as the recommended minimum, but the use of 1000 permutations showed 
no change in the returned absolute proportion of each cell type.

Correlation.  TCGA​.  For the 103 TCGA TNBC cases that were scored by both H&E quantification and 
CIBERSORT quantification, a correlation test was done using the Spearman method in R 4.0.235. The CIBER-
SORT TIL score for each sample was determined by adding the values for all immune types except for eosino-
phils and neutrophils. This is based on published international guidelines97 to score all mononuclear cells when 
quantifying TILs.

Hierarchical clustering.  TCGA​.  For the 132 cases subjected to CIBERSORT analysis, the CD8 T cell and 
CD4 memory activated T cell values representing the quantity of immune cell infiltrate in each sample were 
normalized prior to passing the data to the heatmap.236 function (gplots package 3.0.4) in R 4.0.235 to do the 
clustering. The default cluster and distance functions were used and the scale parameter was set to none since the 
data were already scaled. The cutree function along with visual trends in the resulting dendrogram were used to 
identify 4 clusters of interest, a cluster enriched in both T cells types (n = 33), a cluster uniquely enriched in CD8 
T cells (n = 18), a cluster uniquely enriched in CD4 memory activated T cells (n = 23), and a cluster low in both 
T cell types (n = 58). A cluster analysis was also run using values for all immune cell types except for CD4 naive 
T cells since they had a 0 value in every sample.

Survival analysis.  TCGA​.  103 TNBC cases were scored by a pathologist as having < 1%, 10–20%, 20–
30%, 30–40%, 40–50%, 50–60%, 60–70%, or > 70% TILs. TILs were treated as a continuous variable and tested 
for an association with OS or DFS using a univariate cox proportional hazards model with the Wald test. 11 
samples had TILs > 30%, and 92 had TILs < 30%. Based on these two groups, Kaplan–Meier curves were plot-
ted and significance for OS or DFS was tested with a log-rank test or univariate cox proportional hazards model 
with the Wald test.

For the 132 TNBC cases with gene expression information, the absolute numeric results quantifying the 
amount of each immune cell type in the samples as output by CIBERSORT were loaded in R 4.0.235 along with 
the survival information. Significance of each immune cell type treated as a continuous variable was tested for 
an association with OS or DFS using a univariate cox proportional hazards model with the Wald test. Multiple 
testing correction was performed using the Benjamini and Hochberg method. CD8 T cells and CD4 memory 
activated T cells were further tested with a multivariate cox proportional hazards model with the Wald test.

For the CD8 T cells, CD4 memory activated T cells, and M1 macrophages, multiple cut offs were used in 
order to separate the samples into two groups (0.25 * standard deviation, 0.5 * standard deviation, median, 
mean) or four groups (quartiles) for each immune cell type. Samples that fell in between the standard deviation 
cut offs, termed the medium group, were disregarded. Once the samples were separated into two or four groups, 
Kaplan–Meier curves were plotted and significance of OS or DFS tested with a log-rank test. Multiple testing 
correction was performed using the Benjamini and Hochberg method. Significance at the chosen cut off (0.25 
* standard deviation) for the CD8 T cell and CD4 memory activated T cells was also tested with a multivariate 
cox proportional hazards model with the Wald test.

For the 4 clusters of samples identified by hierarchical clustering, significance of OS or DFS was tested with a 
log-rank test by comparing each cluster to the cluster low in both T cell types or by using all 4 clusters. Multiple 
testing correction was performed using the Benjamini and Hochberg method. Kaplan–Meier curves were plotted 
and a multivariate cox proportional hazards model was run with the Wald test.

METABRIC.  For the 196 TNBC cases with gene expression information, the absolute numeric results quan-
tifying the amount of each immune cell type in the samples as output by CIBERSORT were loaded in R 4.0.235 
along with the survival information. Significance of each immune cell type treated as a continuous variable was 
tested for an association with OS using a univariate cox proportional hazards model with the Wald test. Multiple 
testing correction was performed using the Benjamini and Hochberg method.

For the CD8 T cells and gamma delta T cells, multiple cut offs were used in order to separate the samples 
into two groups (0.25 * standard deviation, 0.5 * standard deviation, median, mean) or four groups (quartiles) 
for each immune cell type. Samples that fell in between the standard deviation cut offs, termed the medium 
group, were disregarded. Once the samples were separated into two or four groups, Kaplan–Meier curves were 
plotted and significance of OS tested with a log-rank test. Multiple testing correction was performed using the 
Benjamini and Hochberg method.

Mutation analysis.  TCGA​.  127 TNBC cases were found to have a reported mutation in the maf file, 
so this total number of cases was used when calculating mutation frequencies overall. Of the several maf files 
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generated by TCGA using different variant callers, the protected MUSE maf file was used. Of all the reported 
mutations, variants with a predicted “HIGH” or “MODERATE” impact on the gene product were kept. Next, 
if a sample had multiple “HIGH” or “MODERATE” impact mutations in a single gene, then the gene was only 
considered to be mutated or not in that sample. This means that genes with only “LOW” or “MODIFIER” impact 
mutations would be called as not being mutated. Therefore, mutation counts are considered to be the number 
of genes that are mutated. Mutation counts between groups were compared using a two-sample Wilcoxon test.

Of the 33 cases in the cluster enriched for both T cell types and the 58 cases in the cluster low in both T cell 
types, 33 and 55 had mutation data, respectively. Of the 40 high and 71 low CD8 T cell cases, 39 and 67 had 
mutation data, respectively. Mutation frequencies between these groups were compared using a Fisher’s exact 
test. Multiple testing correction was performed using the Bonferroni and Benjamini and Hochberg methods.

TNBC subtype analysis.  TCGA​.  For the 132 TNBC cases with gene expression information, the FPKM 
values were normalized with R’s scale function (R 4.0.235) and input in the the TNBCtype tool42. The tool in-
terpreted 8 samples (labeled NA in Table S10) as having high ER expression and recommended their removal. 
These samples were removed and the tool was rerun. The resulting classifications were then used to compare the 
different T cell groups using a Fisher’s exact test. All subtypes were tested at once in a 2 × 8 contingency table, and 
then each subtype was tested individually with a 2 × 2 contingency table where samples were grouped as belong-
ing to the subtype or not. Multiple testing correction was performed using the Benjamini and Hochberg method.

METABRIC.  For the 196 TNBC cases with gene expression information, the intensity values were normalized 
with R’s scale function (R 4.0.235) and input in the the TNBCtype tool42. The tool interpreted 9 samples (labeled 
NA in Table S11) as having high ER expression and recommended their removal. These samples were removed 
and the tool was rerun. The resulting classifications were then used to compare the different T cell groups using 
a Fisher’s exact test. All subtypes were tested at once in a 2 × 8 contingency table, and then each subtype was 
tested individually with a 2 × 2 contingency table where samples were grouped as belonging to the subtype or 
not. Multiple testing correction was performed using the Benjamini and Hochberg method.

Code sharing.  The relevant code and processed data associated with this project are made available at the 
following GitHub repository: https​://githu​b.com/kelga​lla/tnbct​ils or https​://doi.org/10.5281/zenod​o.45425​90.
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