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Direct temporal mode measurement of photon pairs by stimulated emission
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It is known that photon pairs generated from pulse-pumped spontaneous parametric processes can be described
by independent temporal modes and form a multitemporal mode entangled state. However, the exact form of
the temporal modes is not known even though the joint spectral intensity of photon pairs can be measured by
the method of stimulated emission tomography. In this paper, we describe a feedback-iteration method which,
combined with the stimulated emission method, can give rise to the exact forms of the independent temporal
modes for the temporally entangled photon pairs.
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I. INTRODUCTION

Pulse-pumped spontaneous parametric processes, because
of precise timing provided by the ultrashort pump pulses [1,2],
have wide applications in quantum information science such
as time-bin entanglement, quantum multiphoton interference
of independent sources, and heralded single-photon sources.
However, the broad bandwidth of the pump field and strict
phase-matching condition in a highly dispersive nonlinear
medium lead to a complicated spectral correlation in fre-
quency domain.

Fortunately, the issue of complicated spectral correlation
was solved in the time domain. Law et al. first made a
Schmidt decomposition of the joint spectral function (JSF)
and found that the generated two-photon field can be decom-
posed into a superposition of independent pairs of temporal
modes [3]. It was shown later that this mode decomposition
can be extended to the high gain domain [4–6]. This method
significantly simplifies the quantum description for the two-
photon fields, leading to multidimensional temporal quantum
entanglement. Such a temporal mode description was recently
extended more generally into field-orthogonal temporal mode
analysis of electromagnetic fields and was shown to form a
different framework for quantum information [7]. Quantum
pulse gate technique through nonlinear interaction processes
was developed to distinguish different temporal modes with
some success [8–11].

On the other hand, the specific mode functions of the
temporal modes are only revealed by theoretical simulations
through the JSF of parametric processes [3–6]. They can
be indirectly obtained through singular value decomposition
when the JSF is measured [12]. But they have never been
measured directly until recently when Huo et al. applied a
feedback-iteration method to a parametric amplifier operated
in the high gain regime and found the temporal profiles of the
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first few temporal modes [13]. The knowledge of the temporal
profiles of the temporal modes then allows the mode-matched
homodyne detection of the quantum fields generated by the
high gain parametric amplifier to reveal the pairwise quantum
entanglement in continuous variables [13]. For discrete vari-
ables at the photon level, the parametric amplifier needs to
be operated in the low gain regime for spontaneous emission
of photon pairs, as shown by Law et al. [3]. Then, one can
use the information of the temporal profile to implement the
quantum pulse gates [8–11] in temporal mode selection and
demultiplexing.

However, the mode measurement method by Hou et al. [13]
has to rely on the large gain difference among the different
modes to eventually lead to the convergence to the mode with
highest gain. At the low gain regime of spontaneous emission,
the amplifier operates at near unit gain for all modes so there
is basically no difference in gain and the method will not
lead to a converged shape. One may want to turn up the
pump power to push into the high gain regime but it is known
that mode structure in parametric processes changes with the
pump power at high gain [14,15]. Thus the method in Ref. [13]
does not work in the low gain regime for spontaneous photon
pair generation to reveal the temporal mode structure of the
entangled photons discovered by Law et al. [3].

In this paper, we modify the method by Hou et al. [13] and
apply it to the low gain regime. In our approach, instead of
making measurement on the transmitted and amplified beam,
we work on the stimulated emission in the conjugate beam.
This is in a way similar to the method of stimulated emission
tomography [16]. But here we combine the feedback-iteration
method in Ref. [13] and the stimulated emission tomography
method in Ref. [16] to find the final profiles of modes for
both correlated fields in the low gain parametric processes.
Since parametric processes at low gain produce two correlated
photons, the measured mode functions will be the temporal
profiles for the generated photons.

The paper is organized as follows. In Sec. II, we intro-
duce temporal mode analysis of pulse-pumped parametric
processes. We then describe in Sec. III our cross-feedback and
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FIG. 1. Entangled two-photon states consisting of various temporal modes Ak, Bk (k = 1, 2, 3, . . .) in the signal and idler fields generated
from a pulse-pumped parametric process.

iteration method for the temporal mode determination in the
low gain regime and prove the convergence of the iteration.
This is based on singular-value decomposition (SVD) of the
JSF. To demonstrate the validity and the effectiveness of our
method described in Sec. III, we present results of numerical
simulation in Sec. IV by using input-out relations in paramet-
ric processes without the use of the SVD of the JSF. We will
also investigate the process of convergence in this section. We
conclude with a discussion in Sec. V.

II. TEMPORAL MODES OF PULSE-PUMPED
PARAMETRIC PROCESSES

When pumped by an ultrashort pulse, parametric pro-
cesses, realized via either three-wave or four-wave mixing,
produce two correlated fields dubbed “signal” and “idler,” the
evolution of which is governed by the unitary operator

Û = exp

{
1

ih̄

∫
dtĤ

}
(1)

with [4,17]∫
dtĤ = ih̄

∫
dω1dω2F (ω1, ω2)â†

s (ω1)â†
i (ω2) + H.c., (2)

where the frequency correlation is described by the JSF
F (ω1, ω2) and usually has a complicated form related to the
spectral profile of the pump fields and the phase-matching
conditions. Note that it was realized recently that the unitary
operator in the form of Eqs. (1) and (2) is only approximately
correct because Ĥ does not commute at different times [14].
See more discussion later at the end of this section.

Fortunately, through the technique of singular value de-
composition, it is possible [4–6] to write the JSF F (ω1, ω2)
in terms of two sets of orthonormal temporal modes
{ψk (ω1), ϕk (ω2)}, as shown in Fig. 1:

F (ω1, ω2) = G
∑

k

rkψk (ω1)ϕk (ω2) (3)

where {rk} � 0, satisfying the normalization relation
∑

k r2
k =

1, can be arranged in such a way that r1 � r2 � . . . and are the
mode numbers. G > 0 is a positive dimensionless parameter
proportional to the peak amplitudes of the pump fields, the
nonlinear coefficient, and the length of the nonlinear medium,
and∫

dω1ψ
∗
k (ω1)ψk′ (ω1) = δkk′ =

∫
dω2ϕ

∗
k (ω2)ϕk′ (ω2). (4)

Then Eq. (2) can then be rewritten as

1

ih̄

∫
dtĤ =

∑
k

GkÂ†
kB̂†

k − H.c., (5)

where Gk ≡ rkG, Âk ≡ ∫
dω1ψ

∗
k (ω1)âs(ω1) and B̂k ≡∫

dω2ϕ
∗
k (ω2)âi(ω2) are the annihilation operators for the

kth modes of the signal and idler fields with respective
temporal profiles of fk (τ ) ≡ ∫

dωψk (ω)e−iωτ , gk (τ ) ≡∫
dωϕk (ω)e−iωτ . Notice that different temporal modes (k) are

decoupled in Eq. (5) so that the input and output relations for
the parametric process are [4–6]

Âout
k = Âin

k cosh Gk + B̂in†
k sinh Gk,

B̂out
k = B̂in

k cosh Gk + Âin†
k sinh Gk, (6)

which are the relations for a parametric amplifier of amplitude
gains cosh Gk, sinh Gk . These modes are exactly the super-
modes studied by Roslund et al. [18] and are independent
of each other. Through parametric amplification, these modes
are pairwise entangled and form multidimensional quantum
entangled states.

For the low gain case, |Gk| � 1 so Eq. (6) can be approxi-
mated as

Âout
k ≈ Âin

k + GkB̂in†
k , B̂out

k ≈ B̂in
k + GkÂin†

k , (7)

or, in terms of photon state format, the output state is approx-
imately a two-photon state of the form [3–6]

|�2〉 = |vac〉 +
∫

dω1dω2F (ω1, ω2)â†
s (ω1)â†

i (ω2)|vac〉

= |vac〉 +
∑

k

GkÂ†
kB̂†

k |vac〉

= |vac〉 + G
∑

k

rk

∣∣1Ak

〉
s

∣∣1Bk

〉
i, (8)

where |1Ak 〉s ≡ Â†
k |vac〉=∫

dω1ψk (ω1)|ω1〉s, |1Bk〉i ≡ B̂†
k |vac〉=∫

dω2ϕk (ω2)|ω2〉i are the single-photon states of modes
Âk and B̂k .

It should be noted that because Ĥ (t ) in general does not
commute at different times [14] Eq. (1) is only approximately
valid in the low gain case. It has been shown [14] that in
the high gain case the mode decomposition described in
Eq. (5) and the relations in Eq. (6) are still valid for the
two-photon interaction Hamiltonian in Eq. (2) but the mode
parameters {rk} in gain parameters Gk = rkG as well as the
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FIG. 2. Schematic diagram for measuring the mode functions at
low gain. WS: wave shaper. The directly related light fields have
the same line style (dashed or solid) and color (red or blue) and the
direction of the arrow shows the flow of the iteration. The converged
functions are the outputs that give the measured mode functions
ψk (ω) and ϕk (ω).

mode functions {ψk, ϕk} will depend on the pump parameter
G [15].

Recently, Huo et al. [13] applied a feedback-iteration
method based on Eq. (6) to measure explicitly the mode func-
tions {ψk (ω1), ϕk (ω2)}. However, the success of the method
relies on the difference in the gain parameters cosh Gk for
different k. So, the method fails in the low gain case when
cosh Gk ≈ 1 for all k. In the following, we modify the
feedback-iteration method by Huo et al. [13] so as to apply
it to the low gain case to directly measure the mode functions.

III. TEMPORAL MODE DETERMINATION

Our procedure to find the mode functions ψk (ω) and ϕk (ω)
is based on Eq. (7). As shown in Fig. 2, we first inject a
seed (αin) into the signal field and observe the output at the
idler field (βout). This is similar to the method of stimulated
emission tomography [16,19] but we use the information
obtained at the measurement to modify the input seed with
wave shapers: with the shape measured at the idler (βout), we
then inject this shape of pulse into the idler field and in the
meantime observe the output at the signal field (αout). Now we
have a new shape for the input signal seed. We then alternately
inject the seed (αin or βin) at the signal or idler input based on
the measurement result (αout or βout) and repeat this procedure
until steady shapes are observed in both signal and idler fields.

To show the procedure converges, consider a coherent
pulse of spectral shape α

(0)
in (ω) as the initial injected seed into

the signal field A. Because of the orthonormality in Eq. (4),
we can expand it as

α
(0)
in (ω) =

∑
k

ξkψk (ω) (9)

with ξk = ∫
dωψ∗

k (ω)α(0)
in (ω) as the excitation amplitude for

mode k. Throughout the paper, we will assume |ξk|2 � 1 in
order to ignore spontaneous emission in the discussion. Since
the gain is nearly 1, the signal output has no information about
Gk . But it is different for the idler field. Using Eq. (7), we find
the output at the idler field is approximately

β
(1)
out (ω) =

∑
k

ξ ∗
k Gkϕk (ω). (10)

So, the excitations for each mode are modified by Gk but
with different coefficients. Now let us exploit this difference

in the coefficients: we can measure the output spectral shape
β

(1)
out (ω) at the idler field by using the pulse characterization

method [20] and then program an input seed of the shape
β

(0)
in (ω) = Cβ

(1)
out (ω) with a wave shaper (WSi). The wave

shaper electronic gain constant C can be taken as C = 1/G1 to
increase the input intensity, with G1 defined in Eq. (5). At this
time, the injection to the signal input is blocked, so the output
at the signal field becomes

α
(1)
out (ω) = 1

G1

∑
k

ξkG2
kψk (ω). (11)

Now apply this to another wave shaper (WSs) with the same
gain C = 1/G1 to produce a new spectral shape for the input
seed of the signal field and obtain

α
(1)
in (ω) = Cα

(1)
out (ω)

= 1

G2
1

∑
k

ξkG2
kψk (ω)

=
∑

k

ξk (rk/r1)2ψk (ω), (12)

which, from Eq. (10), leads to the output at the idler:

β
(2)
out (ω) = 1

G2
1

∑
k

ξ ∗
k G3

kϕk (ω)

= G1

∑
k

ξ ∗
k (rk/r1)3ϕk (ω). (13)

Since r1 > r2 > . . ., we have (rk/r1)2 < 1 for all modes ex-
cept the first one (k = 1) and their excitation amplitudes are
reduced. We can then iterate the procedure N times and the
output field after N iterations becomes

β
(N )
out (ω) = G1

∑
k

ξk (rk/r1)2N−1ϕk (ω),

α
(N )
out (ω) = G1

∑
k

ξk (rk/r1)2Nψk (ω). (14)

With N large enough, (rk/r1)2N → 0 for k 
= 1 and we are
left with only the first mode: α

(N )
out (ω) ∝ ψ1(ω) and β

(N )
out (ω) ∝

ϕ1(ω). This procedure uniquely determines ψ1(ω) and ϕ1(ω)
up to a normalization constant.

To obtain the mode function for k = 2, we need to
have an input field that is orthogonal to ψ1(ω), that is,
ξ1 = 0. To achieve this, we use the Gram-Schmidt pro-
cess: with ψ1(ω) and ϕ1(ω) known, we set the input as
α′(ω) = α(ω) − ξ1ψ1(ω) or β ′(ω) = β(ω) − η1ϕ1(ω) with
η1 = ∫

dωϕ∗
1 (ω)β(ω), which gives ξ ′

1 = 0 or η′ = 0. Then
the dominating mode will be k = 2. To ensure ξ1 = 0 in
the input of each iteration, we perform the orthogonalization
step after each measurement of the output. Subsequent modes
can be obtained in a similar way but with the orthogonal
step changed to α′(ω) = α(ω) − ∑k−1

i=1 ξiψi(ω) or β ′(ω) =
β(ω) − ∑k−1

i=1 ηiϕi(ω) for mode k.
The argument above is based on the singular value de-

composition of the JSF. To demonstrate its validity, we go
back to the evolution operator presented in Eq. (1) and find
the output from the evolution process. Unfortunately, because
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of the complexity in the JSF, we cannot have an analytical
expression so we resort to numerical simulation.

IV. SIMULATIONS OF TEMPORAL MODE
DETERMINATION PROCESSES

The evolution operator given in Eq. (1) for large pump-
ing power is hard to evaluate [21], but at low pump power
for the low gain regime the dimensionless quantity G2 ≡∫

dω1dω2|F (ω1, ω2)|2 � 1 and we can expand the exponen-
tial in an infinite series and drop the higher-order terms. So,
the evolution operator can be approximated as [4,17]

Û = exp

{
1

ih̄

∫
dtĤ

}
≈ 1 + 1

ih̄

∫
dtĤ

= 1 +
∫

dω1dω2[F (ω1, ω2)â†
s (ω1)â†

i (ω2) − H.c.]. (15)

So, the output becomes

âout
s (ω) = Û †âs(ω)Û ≈ âs(ω) +

∫
dω2F (ω,ω2)â†

i (ω2), (16)

where we used the commutation relation [âs(ω), â†
s (ω1)] =

δ(ω − ω1) and dropped the higher-order terms in F (ω1, ω2).
Similarly,

âout
i (ω) = Û †âi(ω)Û ≈ âi(ω) +

∫
dω1F (ω1, ω)â†

s (ω1).

(17)

If we inject a coherent state of |{α(ω)}〉 at the signal input
port but vacuum at the idler port, the expectation value at the
idler output will be

〈
âout

i (ω)
〉 =

∫
dω1F (ω1, ω)α∗(ω1) ≡ βout(ω) (18)

because the coherent state is independent. Similarly, for an
input at the idler port of |{β(ω)}〉, the output at the signal

field is

〈
âout

s (ω)
〉 =

∫
dω2F (ω,ω2)β∗(ω2) ≡ αout(ω). (19)

Notice that with a singular value decomposition in Eq. (3) for
F (ω1, ω2) and decomposition of Eq. (9) for α(ω) we recover
Eq. (10) from Eq. (18) by using the orthonormal relation in
Eq. (4).

However, our simulation is based on Eqs. (18) and (19)
without the knowledge of the decomposition in Eq. (3). We
will use the cross-feedback method discussed in Sec. III
to find the converged functions βc

out(ω) and αc
out(ω). From

Sec. III, we find βc
out(ω) = ϕ1(ω) and αc

out(ω) = ψ1(ω). So,
this cross-feedback and iteration method will lead directly
to the first-order mode functions ψ1(ω) and ϕ1(ω). We can
follow the same procedure in Sec. III to find mode functions
of other higher orders.

Furthermore, if we choose a mode-independent electronic
gain constant C for the wave shaper, from Eq. (12) we find
that once a specific eigenfunction, say, ψk0 is reached, that
is, ξk = δk,k0 , the ratio between the next two outputs in the
procedure is simply

α
(N+1)
out (ω)

α
(N )
out (ω)

= CG2r2
k0

∝ r2
k0
. (20)

So, we can determine the mode numbers {rk} up to a normal-
ization constant.

In order to demonstrate the validity of the procedure above,
we consider the JSF given in Ref. [6] where the parametric
process is a pulse-pumped four-wave mixing in a dispersion-
shifted fiber. With the spectrum shifted to the center fre-
quencies ωs0 and ωi0 of signal and idler beams by defining
�s,i ≡ ωs,i − ωs0,i0, the JSF has the specific form of

F (�s,�i ) = F exp

{
− (�s + �i )2

4σ 2
p

}

× exp

(−i�kL

2

)
sinc

(
�kL

2

)
. (21)

FIG. 3. Simulated convergent output spectral functions with their magnitudes and phases for the first three modes k = 1, 2, 3 for the JSF
given in Eq. (21). (a) Signal field ψk (�s ). (b) Idler field ϕk (�i ). The green dash-dotted curves are the input spectral functions while the blue
dotted and red solid curves are intermediate outputs after the iteration steps indicated in the legends. The black dashed curves are the final
outputs.
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FIG. 4. Mode number distribution obtained by simulation for the
JSF given in Eq. (21).

Here F is some constant proportional to the amplitudes of the
pump fields and nonlinear coefficient, σp is the bandwidth of
the pump field, and �kL is the phase mismatch for a fiber
length of L. For the dispersion-shifted fiber used in Ref. [6], it
is given by

�kL

2
≈ 0.125

�s

σp
− 0.075

�i

σp
. (22)

Our simulation is based on Eq. (7), which is derived with
the assumption of small F (�s,�i ) or F � 1 for the low gain
case. But because of the small F value the magnitudes of
β(ω) and α(ω) will become progressively decreased as we
iterate the process. To maintain the size, we normalize the
mode functions β(ω) and α(ω) after each step of application
of Eqs. (18) and (19). So the results are independent of F ,
which is then set to 1 in the simulation. The absolute values
and phases of the final converged mode functions of the
first three orders are shown in Fig. 3(a) for the signal field
[ψ1,2,3(ω)] and in Fig. 3(b) for the idler field [ϕ1,2,3(ω)].
The green dash-dotted curves are the initial input spectral
functions and the black dashed curves are the final output
spectral functions. The blue dotted and red solid curves are the
output functions in the intermediate steps with the number of
iterations shown in the legends. The magnitudes and phases
of the mode functions are plotted separately with only final
converged phase functions shown. It can be seen that the
phase parts vary slowly except the π jumps at zeros of the
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Mode number
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0.4
0.6
0.8

1

 r k/ r
1

FIG. 6. Mode number distribution obtained by simulation for the
JSF given in Eq. (21) but with a modified phase of ei(�s+�i )2/σ 2

p added
due to chirping of the pump field.

magnitude. The mode numbers {rk} are plotted in Fig. 4 with
normalization to r1. It can be seen that the mode functions and
the mode numbers are the same as those obtained by the SVD
method in Ref. [6] within the calculation accuracy.

As seen from Fig. 3, the phases of the mode functions vary
slowly with the frequency except a jump of π at zero points of
the functions. This confirms the validity of the approximation
of phase as a step function in Ref. [13]. To see an example
of large phase variation in the mode functions, we add a
chirped phase to the spectrum of the pump field resulting
in a phase of ei(�s+�i )2/σ 2

p to the JSF. Figure 5 shows the
magnitudes and phases of the first three mode functions of
the signal [Fig. 5(a)] and idler [Fig. 5(b)] fields for this case.
As can be seen, the phases change rapidly as a function of
frequency. Even though the extra chirped phase produces the
same joint spectral intensity |F (ωs, ωi )|2 as that in Eq. (21), it
will change the mode structure as shown in the mode number
distribution in Fig. 6 as well as the bandwidths of the mode
functions in Fig. 5.

To further see the effectiveness of this procedure and the
convergence processes, we calculate the ratio of the total
output power of the idler to the total input power of the signal
for each step, that is,

(R(2N−1))2 ≡
∫

dω
∣∣β (N )

out (ω)
∣∣2∫

dω
∣∣α(N−1)

in (ω)
∣∣2 (23)

FIG. 5. Simulated convergent output spectral functions with their magnitudes and phases for the first three modes k = 1, 2, 3 for the JSF
given in Eq. (21) but with a chirped pump phase of ei(�s+�i )2/σ 2

p . (a) Signal field ψk (�s ). (b) Idler field ϕk (�i ). The green dash-dotted curves
are the input spectral functions while the blue dotted and red solid curves are intermediate outputs after the iteration steps indicated in the
legends. The black dashed curves are the final outputs.
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FIG. 7. Normalized ratio R(M )
k /Gr1(k = 1, 2, 3) as a function of

iteration step M. The straight lines are the limiting values of rk/r1.

and, similarly, the ratio of the output at the signal to the input
at the idler:

(R(2N ) )2 ≡
∫

dω
∣∣α(N )

out (ω)
∣∣2∫

dω
∣∣β (N−1)

in (ω)
∣∣2 , (24)

where N = 1, 2, 3, . . .. These ratios can be measured experi-
mentally. Since β

(N−1)
in (ω) ∝ β

(N )
out (ω) and α

(N )
in (ω) ∝ α

(N )
out (ω),

using Eq. (14) and Eqs. (10) and (11), we can find for the first
mode (

R(2N−1)
1

)2 =
∑∞

k=1 |ξk|2G2
k (rk/r1)4(N−1)∑∞

k=1 |ξk|2(rk/r1)4(N−1)
(25)

and (
R(2N )

1

)2 =
∑∞

k=1 |ξk|2G2
k (rk/r1)4N−2∑∞

k=1 |ξk|2(rk/r1)4N−2
, (26)

or, combining the two cases above for M = 2N − 1, 2N , we
have (

R(M )
1

)2 =
∑∞

k=1 |ξk|2G2
k (rk/r1)2M−2∑∞

k=1 |ξk|2(rk/r1)2M−2

→ G2r2
1 for M → ∞. (27)

M is now the overall step number. Likewise, for the k0th mode,

(
R(M )

k0

)2 =
∑∞

k=k0
|ξk|2G2

k

(
rk/rk0

)2M−2

∑∞
k=k0

|ξk|2
(
rk/rk0

)2M−2

→ G2r2
k0

for M → ∞. (28)

Like α
(N )
out and β

(N )
out in Eq. (14), the convergence of R(M )

k0

depends on the ratio rk/rk0 . So quantity R(M )
k0

can represent
how the procedure converges as a function of step M. Hence,
we calculate R(M )

k0
for each iteration step for the k0th mode

(k0 = 1, 2, 3) and normalize it to Gr1 for the JSF in Eq. (21).
We plot it as a function of the iteration step numbers in Fig. 7.
It can be seen that after only a few steps R(M )

k changes slowly
and eventually converges to a final value rk/r1. So, the rate of
convergence is quite good.

V. CONCLUSION AND DISCUSSION

We analyze an experimentally implementable method
to measure directly the temporal modes for the quantum
states generated by pulse-pumped parametric processes. The
method is based on the stimulated emission by a trial pulse and
relies on a cross-feedback and iteration loop. We demonstrate
the convergence of the procedure by numerical simulations for
various situations.

Although the simulation is for the low gain case, since the
method depends on the difference in the gain coefficients of
Gk in Eq. (7), it should also work for the high gain case where
we have different gain coefficients of sinh Gk in Eq. (6), except
that the mode parameters {rk} in Gk = rkG are now dependent
of G. In this case, the mode functions {ψk, ϕk} also depend on
the gain [13–15].

To check for quantum correlation between different tempo-
ral modes for quantum entanglement and orthogonality, as in
Ref. [13], we need to separate the contributions from different
modes, which can be done by homodyne detection in the high
gain case [13] and by quantum pulse gate method in the low
gain case [8–11].

The finite spectral response of the shape measurement
system may affect the convergence and the outputs. It is
equivalent to adding a spectral filter in the iteration loop and
thus may change the eigenmodes. In fact, this was observed in
the experimental demonstration [13]: the input and the output
may not be the same. This effect will affect higher-order
modes more than the lower-order ones because higher-order
modes have a wider spectral range.
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