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ABSTRACT

Do, Nhan Hieu. M.S.E.C.E., Purdue University, August 2016. Parallel Processing
for Adaptive Optics Optical Coherence Tomography (AO-OCT) Image Registration
using GPU. Major Professor: John Jaehwan Lee.

Adaptive Optics Optical Coherence Tomography (AO-OCT) is a high-speed, high-

resolution ophthalmic imaging technique offering detailed 3D analysis of retina struc-

ture in vivo. However, AO-OCT volume images are sensitive to involuntary eye

movements that occur even during steady fixation and include tremor, drifts, and

micro-saccades. To correct eye motion artifacts within a volume and to stabilize a se-

quence of volumes acquired of the same retina area, we propose a stripe-wise 3D image

registration algorithm with phase correlation. In addition, using several ideas such as

coarse-to-fine approach, spike noise filtering, pre-computation caching, and parallel

processing on a GPU, our approach can register a volume of size 512 × 512 × 512

in less than 6 seconds, which is a 33× speedup as compared to an equivalent CPU

version in MATLAB. Moreover, our 3D registration approach is reliable even in the

presence of large motions (micro-saccades) that distort the volumes. Such motion was

an obstacle for a previous en face approach based on 2D projected images. The thesis

also investigates GPU implementations for 3D phase correlation and 2D normalized

cross-correlation, which could be useful for other image processing algorithms.
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1. INTRODUCTION

Adaptive Optics Optical Coherence Tomography (AO-OCT) is a high-speed, high-

resolution ophthalmic imaging technique offering detailed 3D analysis of retina struc-

ture. The AO-OCT system in Dr. Miller’s Lab at Indiana University Blooming-

ton (IUB) allows acquisition of retinal volume images in vivo down to cellular level,

which permits non-invasive visualization of retinal cells as for example cone photore-

ceptors [1]. Studying these volume images offers the promise of earlier detection of

various eye-related conditions such as macular holes, retinal detachments, glaucoma,

and age-related macular degeneration, all of which can lead to blindness [2–4]. This

benefit, however, is not without cost. For a typical scanning session, AO-OCT systems

generate enormous streams of raw data (streaming at 1.6 Gb/s), which quickly adds

up to terabytes in size for a single patient. Moreover, these high resolution volume

images are sensitive to eye motion artifacts because of involuntary eye movements

during fixation including tremor, drifts, and micro-saccades [5]. As a result, even

when we acquire a sequence of volume images of the same retina patch, each volume

has its own unique pattern of distortions (caused by tremor and micro-saccades) and

shifts (caused by drifts and head movement).

Therefore, analyzing retinal volume images requires motion correction using effi-

cient and scalable algorithms. In addition to correcting intra-volume distortion, we

also need to stabilize a sequence of volumes with 3D image registration. Given a

sequence of volume images, 3D image registration will facilitate one-to-one mapping

from the coordinates of thousands of A-lines in each volume to those of a chosen refer-

ence volume (chosen manually or automatically). Current approaches using MATLAB

(CPU) take hours to register a set of volume images, which costs researchers’ time

and also makes it impossible to implement for real-time applications.
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This thesis explores the possibility of using General Purpose Computing on Graph-

ics Processing Units (GPGPU) to register retinal volume images with a reasonable

speed and ideally, real time. With the power of parallel processing from thousands

of cores, GPU is especially suitable for image registration algorithms with a high de-

gree of parallelism, such as correlation-based registration algorithms. This thesis will

present a stripe-wise registration method for AO-OCT volumes with 3D Phase-Only

Correlation (3D POC) and Normalized Cross-Correlation (NCC). This approach will

correct both axial and lateral directions. The registration accuracy and run-time will

be evaluated quantitatively and qualitatively.

The organization of the thesis is as follows. Chapter 2 introduces AO-OCT tech-

nology and benefits of using image registration for reducing eye motion artifacts.

Chapter 3 describes parallel computing technology with GPGPU. Chapter 4 gives

an overview of correlation-based registration algorithms, including normalized cross-

correlation and phase-only correlation. Chapters 5 and 6 explain GPU implemen-

tations of those two algorithms. Chapters 7 and 8 explain how to apply image

registration algorithms to AO-OCT data for 3D registration along with our GPU

implementation. Finally, Chapters 9 and 10 discuss our experimental results and

summarize our contribution.
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2. ADAPTIVE OPTICS OPTICAL COHERENCE

TOMOGRAPHY

2.1 From OCT to AO-OCT

Since introduced in 1990, Optical Coherence Tomography (OCT) has utilized the

principle of low coherence interferometry for micrometer-resolution visualization of

biological tissue’s internal structure in vivo [6]. This instrument is analogous to

ultrasound imaging; however, the imaging beam is infra-red light instead of sound

wave. Using OCT for retinal imaging, a researcher can construct 3D volume images

by raster scanning an infra-red imaging beam across tissue. Over the last two decades,

OCT technology has evolved from time-domain OCT (TD-OCT) to spectral-domain

OCT (SD-OCT), which improved axial resolution from 10µm to 5µm while greatly

reducing image acquisition time [7]. While these OCTs can provide such high axial

resolution, their images still have low lateral resolution (over 15µm) [8] . To improve

lateral resolution, researchers successfully combined OCT with Adaptive Optics (AO)

to create an AO-OCT system. Using a complex array of deformable mirrors, wave

front sensors, high-speed cameras, lenses, etc., AO-OCT enabled researchers to dras-

tically improve lateral resolution down to 3µm by correcting ocular aberrations [1].

When applied to ophthalmic imaging, AO-OCT systems combine the lateral reso-

lution advantage of AO with the axial resolution advantage of OCT to provide an

ultra-high 3D resolution of the retina, which is sufficient to visualize individual cells

such as cone photoreceptors.
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2.2 Eye Motion Artifacts and Image Registration

In Dr. Miller’s Advanced Ophthalmic Imaging Lab at IUB, the research team has

obtained retinal images with 3D resolution up to 3µm in each direction [9, 10] with

scanning speed up to 1 MHz [1]. To describe these volume images, we use specific

terminology as follows. In Figure 2.1, an A-line (amplitude scan) measures a light

scattering intensity profile as a function of depth when the imaging beam scans axially

to the tissue (z-direction). When the beam moves in the x-direction, a stack of A-lines

constitutes a 2D image known as fast B-scan (brightness scan). The A-line intensity

plot shows a specific depth profile of a specific A-line (in white) in the fast B-scan

shown at the right side of the figure.

Fig. 2.1.: A-line and fast B-scan in an AO-OCT volume image.

In Figure 2.2, stacking fast B-scans in the y-direction will construct a volume

image of a retina. Projecting a volume onto the yz-plane by averaging all pixels
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in the x-direction creates a slow B-scan projection, which shows different layers of

cellular structures. The vertical irregular shift among fast B-scans appearing in a

slow B-scan is caused by a subject’s head movement in axial direction (inwards or

outwards against the scanning instrument). Projecting a volume on the xy-plane by

averaging all pixels in the z-direction creates a C-scan projection (or called en face

projection). In high resolution, a C-scan can show cone cells and blood vessels. The

distortion in the C-scan in Figure 2.2 is caused by involuntary eye motion under

fixation on the xy-plane such as micro-saccade. We assume that eye motion is not

significant within one fast B-scan because the acquisition time for a fast B-scan is

so fast (1 to 2 ms) that the retina is considered to be stand still during that time.

However, there are eye motions between different fast B-scans.

Fig. 2.2.: Slow B-scan and C-scan in AOOCT volume image.

Obtaining a sequence of volume images creates a time-series 3D image of ideally

the same retinal patch. However, because eye movements occur as the imaging beam

scans, the acquired volumes are distorted relatively to one another. Figure 2.3 illus-

trates the lateral movement in a form of C-scan projection between a target volume

and a reference volume. In a series of volume images, one volume with the highest

quality (low distortion and high contrast) is chosen to be the reference volume. The
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task of image registration is to map the coordinates of A-lines from other volumes

(which we call target volumes) to the coordinate of the reference volume. The out-

put of a registration algorithm is 3D displacement of each A-line in the x, y and z

directions relative to the corresponding A-line in the reference volume.

Fig. 2.3.: Lateral movement between a target image and a reference image.

Effective image registration can provide many benefits. For on-the-fly processing,

detecting eye motion in real time can provide feedback for the system for eye tracking

and maintaining the field of view. For post-processing, as we obtain many volumes of

the same retina area, we can combine data from many low-quality volumes to create

a high-quality volume with improved signal-to-noise ratio as well as to correct ocular

image distortion. In addition, we can also analyze data from the same retina area for

an extended period of time such as days or months to observe cellular-level changes,

for example, the development of an eye-related disease [10].



7

3. PARALLEL COMPUTING WITH GPGPU

3.1 The Rise of Parallel Computing

Conventionally, computer programs run in a serial manner, meaning that each

instruction is executed one after another using a CPU (Central Processing Unit).

Therefore, speed of execution highly depends on CPU’s frequency (clock rate). Thus,

to improve performance, the industry has eventually increased CPU’s clock rate: from

2 MHz for the Intel 8080 CPU in 1975 to about 3-4 GHz for modern CPUs such as

the Intel Core i7 processor. However, modern CPU cores are reaching the physical

limitation on transistors’ size and heat restriction. As a result, instead of containing

a single core, a processor contains many cores on a chip (two, four, eight, or sixteen

cores), with the goal of increasing throughput by having many cores process data

independently in parallel.

The trend of more fine-grained parallel computing has started in 2010 [11]. Begin-

ning in the 20th century, Graphics Processing Units (GPUs) gained attraction with a

different processing architecture. Instead of having a few powerful cores like a CPU,

a GPU employs hundreds to thousands of simple cores for massively parallel com-

puting. At first, GPUs were used for graphics rendering and pixel shading, and were

tricky to be used for other computing tasks. To support general purpose comput-

ing, in November 2006, NVIDIA released GeForce 8800 GTX series, which was the

first GPU with CUDA architecture, effectively creating the first GPGPU (General

Purpose computing on Graphics Processing Unit). Since then, GPUs have been used

for high performance computing for various applications with a large amount of data

especially in science and engineering.
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3.2 Compute Unified Device Architecture (CUDA)

CUDA is an architecture designed to enable developers to use a GPU for gen-

eral purpose computing tasks. The language for CUDA is very similar to C with

additional keywords for utilizing GPU resources. With CUDA, industries have im-

proved performance of previous algorithm implementations by orders-of-magnitude

speedup [11]. At the time of writing, NVIDIA has released CUDA 7.5 with extra

features to allow flexible programming design with support for C++11, which was

not possible in previous CUDA.

An application written for GPGPU includes host code and device code. Host

code refers to the part of application that executes on a CPU and accesses main

memory such as system hard disk or RAM. On the other side, device code refers to

the part of application that runs on a GPU and has access to GPU’s memory. Device

code is organized into kernels. They are functions that allow passing arguments such

as configuration parameters or pointers to input and output data. A kernel can be

invoked by either from host code or from other kernels.

When launched, the same kernel will be executed by thousands of threads con-

currently. Threads are grouped into blocks, and blocks are grouped into a grid. Each

thread or block has an identifier such as threadIdx or blockIdx. Using these iden-

tifiers and the information about block dimension blockDim (how many threads in

a block) and grid dimension gridDim (how many blocks in a grid), each thread can

calculate the unique address of its input or output memory. The block dimension

and grid dimension are chosen such that there are enough threads to share the total

workload and to be able to hide the memory latency.

The memory hierarchy of a GPU contains many types: registers, shared memory,

texture memory, constant memory, and global memory, in the order of increasing

latency [12]. Each thread has its private registers with a latency to read/write is

one or a few clock cycles. Threads in the same block can communicate via shared

memory with a reasonable latency (1 - 32 clock cycles). All threads can access to
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texture memory, constant memory and global memory, however, with a latency of up

to 400 - 600 clock cycles. Although registers and shared memory are fast, their sizes

are very limited compared to global memory. Nevertheless, latency to global memory

can be reduced with caches such as L1 cache and L2 cache depending on GPU type.

Therefore, accessing memory effectively is crucial for GPU programming because

many applications are not arithmetically bounded but are memory bandwidth bounded.

This means that an application should utilize registers and shared memory as much

as possible before considering global memory. When reading/writing to global mem-

ory is required, some techniques to increase throughput include coalesced memory

access, usage of constant memory and texture memory, and GPU streams. Memory

coalescing allows combining memory accesses from multiple threads in one transac-

tion. Constant memory and texture memory are just special areas of global memory

but are cached. GPU streams allow overlapping data transfer and kernel execution,

thus increasing throughput.

3.3 Maxwell Architecture

The GPU micro-architecture has evolved for many generations: G70, Tesla, Fermi,

Kepler, and most recently, Maxwell (developed in 2014). Maxwell introduces many

advancements over previous architectures and allows better workload balancing, in-

struction scheduling, and power efficiency. As an improvement from SMX (Kepler

streaming processor), Maxwell employs the new SMM (Maxwell streaming proces-

sors) that has four 32-core processing blocks, eight texture units, and one PolyMorph

Engine (Figure 3.1). The size of shared memory is also larger and more dedicated.

In Fermi and Kepler, each SMX has 64 KB of fast memory to be partitioned between

shared memory and L1 cache. In Maxwell, as L1 and texture caches are combined

into a single unit, each SMM now has whole 64 KB dedicated shared memory, and

even up to 96 KB for the second generation of Maxwell. This large shared memory

will allow more blocks to occupy the SMM concurrently [13].
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In this research, we utilize an NVIDIA Titan X GPU, which has the second

generation of Maxwell architecture. With 3072 CUDA cores, it provides an increased

performance for single-precision floating point computation (6 TFLOPS). Titan X

also has 12 GB of GDDR5 RAM with memory bandwidth up to 336.5 GB/s [14]

that allows us to process large volume images. However, Titan X has a poor double-

precision floating point computation performance (0.19 TFLOPS) [15]. Therefore,

the floating point computation of our algorithms should better be single-precision.

However, float overflow and underflow may happen during computation and should

be handled.

Fig. 3.1.: Maxwell SMM streaming processor [13].
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4. IMAGE REGISTRATION WITH CORRELATION

METHODS

4.1 Image Registration Theory

The purpose of image registration is to align images of the same object that

are somewhat different due to distortions, movements, and differences in acquisition

angles, time, and/or sensors used. This is an important step to process data before

further analysis in many areas, especially in medical imaging. The image that we

consider to be stationary is called a reference image, while those moving relatively to

the reference image are called target images.

There are two main categories of image registration: feature-based and correlation-

based. In a feature-based method, common features between a reference image and

a target image are identified and then a point-by-point mapping between them is

estimated. The feature selection can be manual, semi-automatic, or fully automatic.

For 2D OCT images, features can be blood vessels or the optic disc. For 3D AO-

OCT data, features can be blood vessels and cones. However, because AO-OCT

volume images zoom in a small area on a retina, it is harder to find prominent

features because the optic disc is missing and blood vessels are few. In addition, it

is hard to establish an automatic 3D feature selection algorithm. Alternatively, a

correlation-based method will match image textures between a reference image and a

target image. This can be done either in the spatial domain with Normalized Cross-

Correlation (NCC) [16] or in the frequency domain with Phase-Only Correlation

(POC), or Phase Correlation in short [17].
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4.2 Normalized Cross-Correlation

NCC is frequently used for template matching, in other words, finding a sub-image

in a reference image that provides the best match for a chosen template. Let t(x, y) be

a template image and f(x, y) be a sub-image that has the same size as the template

image. Then, NCC between them is calculated as follows:

1

N

∑
x,y

(f(x, y)− µf )(t(x, y)− µt)

σfσt
(4.1)

In this equation, µf and µt are averaged pixel intensity values (means) of f and

t; σf and σt are standard deviations of f and t; and N is the number of pixels in f .

Note that in Equation 4.1, each image is subtracted by its mean and then divided by

its standard deviation before calculating cross-correlation. This normalization step

can improve accuracy in template matching in case f and t have different brightness

levels.

Next, a correlation map can be obtained by calculating NCC for all possible sub-

images in the reference image by moving a template image over the entire reference

image. This process is similar to a convolution between two images. Therefore, if a

template image has size M and a reference image has size N , the correlation map will

have size M + N − 1. The largest correlation coefficient value in this map denotes

the best match position, which is also the translationally shifted amount between two

images.

4.3 Phase Correlation

The following section will demonstrate image registration using POC between two

2D images. However, the formula can be generalized for higher dimension cases such

as 3D. We only consider a translational shift with no rotation or scale between those

two images in our study.
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Let fa(x, y) be a reference image and fb(x, y) be a target image. Assume that the

target image is a translationally shifted version of the reference image by (∆x,∆y),

then:

fb(x, y) = fa(x−∆x, y −∆y) (4.2)

Applying Fourier Transform (FT) to both sides of the equation, we obtain Fa

and Fb that are the FT of fa and fb, respectively. Here we apply the Fourier Shift

Theorem, which states that a linear shift in the spatial domain will be equivalent to

a phase shift in the frequency domain as follows:

Fb(u, v) = Fa(u, v)e−j(u∆x+v∆y) (4.3)

Then we can calculate cross-power spectrum by taking point-wise multiplication

between Fa and the complex conjugate of Fb (denoted by F ∗b ) and normalize the

product to keep only the phase information in the exponential.

Fa(u, v)F ∗b (u, v)

|Fa(u, v)F ∗b (u, v)|
= ej(u∆x+v∆y) (4.4)

The Inverse Fourier Transform (IFT) of the cross-power spectrum will result in a

Dirac delta function δ centered at (−∆x,−∆y) as follows:

F−1{ej(u∆x+v∆y)} = δ(x+ ∆x, y + ∆y) (4.5)

In practice, the shift (∆x,∆y) may not have integer values. As a result, phase

correlation can even determine a sub-pixel level shift [18, 19] based on different in-

terpolation methods. Phase correlation can also be extended to find rotation and

scaling differences [17]. However, our application only requires an estimated rigid

translational pixel level shifts, and thus, we do not consider those extensions, which

are more complicated to implement.

Figure 4.1 compares using a normalized cross-correlation method and a phase

correlation method to register between a reference image and its shifted version as a
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target image. The target image is shifted by (∆x,∆y) = (−50,−30). By finding the

peak in the phase correlation from Figure 4.1(d), we can estimate the translational

shift between the target image and the reference image.

Figure 4.1(c) shows the correlation map if we use NCC. This map is cropped to

have the same size with the reference image. The peak showing the highest correlation

value is more apparent in POC than in NCC. In addition, the execution time of NCC

takes longer than that of POC. For the given example in Figure 4.1, MATLAB takes

5 ms for POC whereas 52 ms for NCC. Given that our application requires fast

running time for large data size in 3D, we decide to base our approach on POC.

However, NCC can be used as an alternative because NCC is more suitable for pixel

level registration than POC. The reason is that NCC gives the best match position

when moving a template image across a reference image one pixel at a time (template

matching).
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Fig. 4.1.: Demonstration of normalized cross-correlation versus phase correlation on

two images contaminated with white Gaussian noise. (a) the reference image. (b)

the target image. (c) the correlation map with normalized cross-correlation. (d) the

correlation map with phase correlation.
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5. 3D PHASE CORRELATION IN GPU

5.1 Implementation Overview

Following the phase correlation algorithm from Section 4.3, we designed a GPU

program with the help of cuFFT library from NVIDIA. This library is built based

on the popular FFTW library to do Fast Fourier Transform (FFT) on GPU [20].

Algorithm 1 summarizes our implementation.

Note that for the phase correlation computation, a target volume and a reference

volume must have the same size. If their sizes are different, zero-padding should be

done for the smaller volume before calling PhaseCorrelation.

To prepare for FFT, Lines 1 to 3 create a configuration (which is called plan) to

optimize FFT for a given input size and the selected GPU hardware [20]. cufftPlan3d

allows us to create plans for FFT in 1D, 2D, or 3D with either forward Discrete

Fourier Transform (DFT) or backward Inverse Discrete Fourier Transform (IDFT).

The equation for the forward DFT we use is as follows:

Y [u, v, w] =
NX−1∑
x=0

NY−1∑
y=0

NZ−1∑
z=0

X[x, y, z]e
−2πj(ux)
NX e

−2πj(vy)
NY e

−2πj(wz)
NZ (5.1)

For the backward IDFT we use:

Y [u, v, w] =
1

NX ×NY ×NZ

NX−1∑
x=0

NY−1∑
y=0

NZ−1∑
z=0

X[x, y, z]e
2πj(ux)
NX e

2πj(vy)
NY e

2πj(wz)
NZ (5.2)

In both of the equations above, X is the input and Y is the output after the

corresponding transformation.

Our phase correlation algorithm requires two DFTs and one IDFT. Instead of

creating three plans, one for each of the transformations, we only need two plans.

The forward plan is used for the two DFTs of the target volume and the reference

volume because both volumes are assumed to have the same size. The backward plan



17

Algorithm 1 PhaseCorrelation (tarV ol, refV ol)

Note: tarV ol refers to a target volume and refV ol refers to a reference volume.

We assume that both tarV ol and refV ol are of the same size (NX,NY,NZ). The

output is the shifted amount (∆x,∆y,∆z) of tarV ol in relative to refV ol.

1: cufftHandle fwplan, bwplan

2: cufftPlan3d (&fwplan, NX,NY,NZ, CUFFT R2C)

3: cufftPlan3d (&bwplan, NX,NY,NZ, CUFFT C2R)

4: realSize← NX ×NY ×NZ

5: complexSize← NX ×NY × (NZ/2 + 1)

6: cufftComplex* tarV olF, refV olF

7: cudaMalloc(&tarV olF, complexSize× sizeof(cufftComplex))

8: cudaMalloc(&tarV olF, complexSize× sizeof(cufftComplex))

9: cufftExecR2C (fwplan, tarV ol, tarV olF )

10: cufftExecR2C (fwplan, refV ol, refV olF )

11: tarV olF ← PointwiseConjugateProduct (refV olF , tarV olF , complexSize)

12: cufftReal* coefMap← tarV ol

13: cufftExecC2R (bwplan, tarV olF, coefMap)

14: (maxIndex,maxV alue)← FindMaxIndex (coefMap, realSize)

15: (∆x,∆y,∆z) ← Ind2Sub (maxIndex,NX,NY,NZ)

16: correlationCoef ← maxV alue/realSize

17: return (∆x,∆y,∆z)

is used for the IDFT. We name the forward plan as fwplan and the backward plan

as bwplan.

As mentioned in [20], when the input volume has real values like in our application,

its DFT will have complex values and will satisfy Hermitian symmetry. This means
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that the output can be stored using almost half of the required memory space. Similar

property also holds for Complex to Real IDFT. That is, if input data are in complex

values and thus satisfy Hermitian symmetry, the output is purely real-valued. We

show data sizes for these two transformations in Table 5.1.

Table 5.1: Data size in different 3D transformations in cuFFT

FFT type for 3D Input data size Output data size

Real to Complex NX ×NY ×NZ NX ×NY × (bNZ/2c+ 1)

(CUFFT R2C) cufftReal cufftComplex

Complex to Real NX ×NY × (bNZ/2c+ 1) NX ×NY ×NZ

(CUFFT C2R) cufftComplex cufftReal

Lines 4 and 5 in Algorithm 1 calculate the realSize and complexSize. Next, Lines

6 to 8 allocate GPU memory for the output arrays for forward DFTs (complexSize

complex numbers per array). Complex number type is represented by the data type

cufftComplex from cuFFT library.

Lines 9 and 10 perform the forward DFT. The function cufftExecR2C is part of

the cuFFT library. It takes three parameters: a plan to execute, input, and output.

Line 11 calculates the normalized cross-power spectrum between refVolF and tar-

VolF as shown in the left hand side of Equation 4.4. The output is written to tarVolF

to save memory space because we no longer need the DFT result of tarVol any more.

The details of function PointwiseConjugateProduct will be discussed in Algorithm 2.

In Line 12, we use the memory allocated by tarVol to hold the correlation map

because the data in tarVol is no longer needed. If we wish not to overwrite tarVol,

extra memory of size realSize must be allocated using cudaMalloc for coefMap. Line 13

performs the backward IDFT with the input as our normalized cross-power spectrum

(now stored in tarVolF ). The output will be stored in a 3D matrix coefMap. Note

that bwplan is used here.
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Next, Line 14 finds the maximum element in coefMap using function FindMaxIn-

dex. The details of this function will be discussed in Algorithms 3 and 4. The maxIn-

dex returned from this function is the linear index of coefMap. As a consequence,

function Ind2Sub is used in Line 15 to convert this linear index to 3D. The details of

Line 15 will be discussed in Algorithm 5. This is the 3D shift amount between tarVol

and refVol that needs to be returned as (∆x,∆y,∆z).

In Line 16, we obtain the value of the maximum correlation coefficient directly

from maxValue. Note that we have to normalize it by realSize. The reason is that for

the backward IDFT, cuFFT only calculates the triple sum in Equation 5.2. Therefore,

we have to divide the result by the total number of elements. Although we do not

require this correlation coefficient value in our application, it is presented here for

completeness.

5.2 Supplementary Kernels

5.2.1 Pointwise Conjugate Product

This function takes two arrays of complex numbers (A and B) and calculates

A◦B∗

|A◦B∗| , where ◦ represents the point-wise product (Hadamard product) and B∗ repre-

sents the complex conjugate of B. The result of the computation will overwrite data

in B.

Lines 1 to Line 3 specify the number of threads per block and the number of blocks

to be called when launching the Pointwise-Conjugate-Product-Kernel kernel

in Line 4. We provide an option to limit the number of maximum blocks launched

on the GPU (MAXBLOCKS ) to provide flexibility for different GPUs. One can tune

this parameter for better performance and utilization balance, for example, selecting

MAXBLOCKS to be a multiple of the total number of SMs on a device.

Pointwise-Conjugate-Product-Kernel implements a grid-stride loop to

enable threads reuse and scalability [21]. With thread reuse, the cost of construc-

tion and destruction of threads, along with the computation of gtid and gridSize
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Algorithm 2 PointwiseConjugateProduct (A,B, size)

Note: Two complex array A and B are assumed to be the same size. The output

will be overwritten to B. The type of A and B is cufftComplex. For a number a of

this type, we can access the real part by a.x and the complex part by a.y

1: threads← 256

2: MAXBLOCKS ← 1024

3: blocks← min(dsize/threadse,MAXBLOCKS)

4: Pointwise-Conjugate-Product-Kernel ≪ blocks, threads ≫

(A,B, size) . Call the GPU kernel

5: function Pointwise-Conjugate-Product-Kernel(A,B, size)

6: gtid← blockIdx.x× blockDim.x+ threadIdx.x

7: gridSize← blockDim.x× gridDim.x

8: while gtid < size do . grid stride loop

9: a← A[gtid].x

10: b← A[gtid].y

11: c← B[gtid].x

12: d← B[gtid].y

13: retX ← a× c+ b× d

14: retY ← −a× d+ b× c

15: scale = 1/
√
retX2 + retY 2

16: B[gtid].x← scale× retX

17: B[gtid].y ← scale× retY

18: gtid← gtid+ gridSize . index update for grid stride loop

19: end while

20: end function
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before the loop in Line 8, is amortized over loop iterations. In addition, the grid-

stride loop allows our kernel to run with any data size without worrying about the

maximum number of blocks supported by the GPU.

For each iteration in the loop in Line 8, let α = A[gtid] = a+bj and β = B[gtid] =

c+ dj; then we have αβ∗ = (a+ bj)(c− dj) = (ac+ bd) + (−ad+ bc)j (Lines 9 to 14 ).

We then normalize this result by the Euclidean norm ‖ (ac+ bd) + (−ad+ bc)j ‖ and

save the result to an output array (overwritten to B in this case) (Lines 15 to 17).

The normalization step is required to keep only the phase correlation information.

After that, in Line 18, the gtid is incremented by a grid-stride and ready to calculate

the next group of elements. Note that we check if the gtid is within the boundary of

size in Line 8 to avoid illegal memory access.

5.2.2 Find the Index of the Maximum Element

This function takes an array of real numbers (A) and find the maximum value

along with its linear index. Algorithm 3 demonstrates the process in two steps:

Find-Max-Index-Kernel (shown in Algorithm 4) in the GPU side and Find-

Max-Index-CPU in the CPU side.

Figure 5.1 demonstrates these two steps. The first step performs a well-known

technique in GPU called reduction. For an array that has N elements, we can divide

it into M blocks. Instead of sequentially checking each element in an array to find

the maximum value, which requires O(N) steps, reduction performs comparisons in

parallel across each block and reduces the number of steps needed per block down to

O(log2N/M). The output will be stored in outIndex and outArray. Each element

in the array holds the maximum value and its index for each block. As a result,

the size of outIndex and outArray is M elements. For implementation, we adapt

the optimized reduction code from [22], whose purpose is for summation reduction.

Therefore, we modify it into maximum reduction with extra shared memory to keep

track of the index of the maximum element. The process for maximum reduction
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Algorithm 3 FindMaxIndex (A, size)

Note: Input is a real-value array A with the specified size. The output will be the

index and value of the maximum element.

1: threads← 256

2: MAXBLOCKS ← 1024

3: blocks← min(dsize / threadse,MAXBLOCKS)

4: smemSize← 2× threads× sizeof(float)

5: Find-Max-Index-Kernel ≪ blocks, threads, smemSize ≫ (A, size,

outIndex, outData) . Call the GPU kernel

6: return Find-Max-Index-CPU(outIndex, outData, blocks)

7: function Find-Max-Index-CPU(indexArray, dataArray, size)

8: maxV alue← maximum element in dataArray

9: maxIndex← the corresponding index in indexArray

10: return (maxIndex,maxV alue)

11: end function

is illustrated in Figure 5.2. For the second step of reduction, we can either launch

another GPU kernel to find the final maximum value or copy the data to the CPU

and run the reduction on the host. We decide to choose the later approach because

it would be wasteful to use the GPU for a small data size of M elements.

Lines 1 to 4 specify the parameters to launch the Find-Max-Index-Kernel

kernel. Note that along with the number of threads and the number of blocks, we

have an extra parameter here for the size of the shared memory. In CUDA, the shared

memory can be declared in the kernel itself, or dynamically declared in the kernel

call (Line 5). The benefit of dynamic allocation is that we can specify the size of

this memory at run-time rather than hard-coded in the kernel. In addition, note that

we require that this shared memory is twice the number of threads per block (Line
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Fig. 5.1.: Two-step reduction in FindMaxIndex.

4) because we need to not only store the data values but also their corresponding

indexes as well.

The detail of Find-Max-Index-Kernel in Algorithm 4 is as follows. First,

Lines 2 to 4 calculate the local/global thread indexes and the grid size. After that,

Lines 5 through 9 declare and initialize the shared memory. Here we have two memory

pointers smem and smemIndex to divide our shared memory to two halves of length

blockDim.x each: the first half is for smem and the second half is for smemIndex.

In addition, we need to declare the shared memories as volatile in Lines 6 and 7 to

prevent incorrect behaviors caused by compiler optimization. Lines 10 to 14 load the

data from global memory to the shared memory. Again, the grid stride loop enables

us to reduce several elements per thread and increase the work load for each thread

(technically called instruction level parallelism). Line 16 synchronizes the threads. It

is necessary to avoid race condition because the next part requires the cooperation

between threads using shared memory. In GPU, function syncthreads() guarantees

that all threads have finished writing to shared memory before continuing. Lines 17

through 22 perform the reduction in shared memory and cut the data by half for
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Fig. 5.2.: Reduction in GPU to find the maximum value and the maximum index.

For a box that says a(b), then a is the value and b is the corresponding index. From

the original array in the first row, the maximum value is 12 at index 5.

each iteration. syncthreads() is needed here because the threads need to wait for

other threads to finish current step. However, when the number of active threads

goes down to the warp size of 32 (Lines 23 - 30), we do not need syncthreads() any

more because threads within a warp are implicitly synchronized. Finally, the first

thread in each block will output the reduction result for that block (Lines 31 - 34).

5.2.3 Convert Linear Index to 3D Subscript

This function converts from linear indexes to equivalent 3D coordinates (or called

subscripts) of a 3D matrix. This is the implementation of a similar function in
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Algorithm 4 Find-Max-Index-Kernel(A, size, outIndex, outData)

1: function Find-Max-Index-Kernel(A, size, outIndex, outData)

2: tid← threadIdx.x

3: gtid← blockIdx.x× blockDim.x+ threadIdx.x

4: gridSize← blockDim.x× gridDim.x

5: extern shared float S[]

6: volatile float* smem← S

7: volatile int* smemIndex← &smem[blockDim.x]

8: smem[tid]← FTL MIN . Smallest float number in GPU

9: smemIndex[tid]← −1

10: while gtid < size do . grid stride loop

11: if A[gtid] > smem[tid] then

12: smem[tid] = A[gtid], smemIndex[tid] = gtid

13: end if

14: gtid← gtid+ gridSize . index update for grid stride loop

15: end while

16: syncthreads()

17: for s = blockDim.x/2; s > 32; s <<= 1 do

18: if tid < s then

19: Update-Max(tid, tid+ s)

20: end if

21: syncthreads()

22: end for

MATLAB called ind2sub 1. Figure 5.3 shows the mapping for a 2× 2× 3 matrix. For

example, linear index 7 is mapped to (1, 0, 1). If we call the function as Ind2Sub(7,

2, 2, 3), the return values will be (∆x,∆y,∆z) = (1, 0, 1).

1http://www.mathworks.com/help/matlab/ref/ind2sub.html (Last Date Accessed: May 2016)
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Algorithm 4, continued

23: if tid < 32 then

24: Update-Max(tid, tid+ 32)

25: Update-Max(tid, tid+ 16)

26: Update-Max(tid, tid+ 8)

27: Update-Max(tid, tid+ 4)

28: Update-Max(tid, tid+ 2)

29: Update-Max(tid, tid+ 1)

30: end if

31: if tid == 0 then

32: outData[blockIdx.x]← smem[0]

33: outIndex[blockIdx.x]← smemIndex[0]

34: end if

35: procedure Update-Max(tA, tB)

36: if smem[tA] < smem[tB] then

37: smem[tA]← smem[tB]

38: smemIndex[tA]← smemIndex[tB]

39: end if

40: end procedure

41: end function
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Algorithm 5 Ind2Sub(linearIndex,NX,NY,NZ)

Note: Input is a non-negative integer linearIndex, which is a linear index for an

element in a volume of size NX × NY × NZ. NZ is the fastest running index. NX

is the slowest running index. Output is equivalent 3D subscripts.

1: ∆x← blinearIndex/(NY ×NZ)c

2: ∆y ← b(linearIndex (mod NY ×NZ))/NZc

3: ∆z ← linearIndex (mod NZ)

4: return (∆x,∆y,∆z)

Fig. 5.3.: The mapping from linear indexes in (a) to equivalent subscripts in (b) for

a 3D matrix. For (b), each box has the subscripts of (x, y, z).

Algorithm 5 details the implementation. The mapping utilizes modular and floor

functions to get the subscript. In C++, assuming linearIndex,NX,NY,NZ are of

type integers, we can simply use integer division for the floor function.
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6. 2D NORMALIZED CROSS-CORRELATION IN GPU

Although Normalized Cross-Correlation (NCC) is a robust template matching algo-

rithm, its huge amount of computation becomes a challenge. In [23], J.P. Lewis tried

to speed up the algorithm by pre-computing integral images over the search window.

Based on this approach, MATLAB function normxcorr2 1 computes the NCC between

two images (a template image and a reference image). However, this function yields

unreliable result when the template image has the same size with the reference image.

In this case, the computation is incorrect for borders of the coefficient map where the

template image does not wholly overlap with the reference image as noted by Dirk

Padfield [24]. His implementation of NCC in MATLAB (called normxcorr2 general

2) fixed this problem by normalizing the cross-correlation by the number of actual

overlapped pixels. We based on normxcorr2 general to implement our GPU version

for NCC. This implementation is based on the following formula from [23]:

γ(u, v) =

∑
x,y [f(x, y)− f̄u,v][t(x− u, y − v)− t̄]{∑

x,y [f(x, y)− f̄u,v]2
∑

x,y [t(x− u, y − v)− t̄]2
}0.5 (6.1)

where f is the reference image, t̄ is the mean of the template image, f̄u,v is the mean

of f(x, y) in the region overlapping with t, and γ is the NCC coefficient map.

6.1 Implementation Overview

Algorithm 6 provides an overview of computing our NCC coefficient map. Given

a pair of images (say T and A with size (NX,NY ) each), function Normxcorr2

calculates the coefficient map when performing NCC between them. As mentioned in

Section 4.2, the size of the coefficient map will be (MX,MY ) where MX = 2NX−1

1http://www.mathworks.com/help/images/ref/normxcorr2.html (Last Date Accessed: May 2016)
2http://www.mathworks.com/matlabcentral/fileexchange/29005-generalized-normalized-cross-
correlation (Last Date Accessed: May 2016)
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and MY = 2NY − 1. All variables in the left hand side from Line 2 to Line 16 in

Algorithm 6 implicitly have the size of (MX,MY ) unless mentioned otherwise.

Lines 1 to 2 compute a matrix of size (MX,MY ) which contains the number of

overlapped pixels when moving a template image across the entire reference image

(shown in Figure 6.1). In this figure, the size of T and A is (NX,NY ) = (2, 2),

and the size of overlapP ixels is (MX,MY ) = (2 + 2 − 1, 2 + 2 − 1) = (3, 3). To

compute overlapP ixels, function LocalSum is utilized with the input being a matrix

of all ones of size (NX,NY ) named ones. The detail of LocalSum will be described

in Algorithm 8. Creating ones requires only a simple GPU kernel that writes 1 to an

output array of size NX×NY . This can be done with a grid-stride loop as discussed

in Section 5.2.1.

Fig. 6.1.: The number of overlapped pixels in the coefficient map when moving a

template image T across the entire reference image A.

Lines 3 to 5 compute the denominator part of Equation 6.1 for the reference

image A. This part can be computed efficiently with the integral images (or running

sums) of A and A2 [23]. LocalSum is utilized to calculate these integral images. To

compute A2, a simple GPU kernel that squares all pixels in A can be implemented
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Algorithm 6 Normxcorr2 (T,A, requiredOverlapP ixels)

Note: T refers to a template image and A refers to a reference image. We assume

that both T and A have the same size (NX,NY ). The output is a coefficient map

of size (MX,MY ) where MX = 2NX − 1 and MY = 2NY − 1. The value in the

coefficient map is set to 0 for the region that has the number of overlapped pixels

fewer than requiredOverlapP ixels.

1: ones← Create a matrix of all ones with size (NX,NY )

2: overlapP ixels← LocalSum (ones,NX,NY )

. Denominator part for A

3: localSumA← LocalSum (A,NX,NY )

4: localSumA2← LocalSum (A2, NX,NY )

5: denomA← localSumA2− (localSumA)2./overlapP ixels

. Denominator part for T

6: rotatedT ← FlipMatrix (T,NX,NY )

7: localSumT ← LocalSum (rotatedT,NX,NY )

8: localSumT2← LocalSum (rotatedT 2, NX,NY )

9: denomT ← localSumT2− (localSumT )2./overlapP ixels

. Numerator part

10: fftA← F(A)

11: fftT ← F(rotatedT )

12: xcorrTA← F−1(fftA ◦ fftT )

. Compute the coefficient map

13: numerator ← xcorrTA− localSumA ◦ localSumT./overlapP ixels

14: denominator ←
√
denomA ◦ denomT

15: coefMap← numerator./denominator

16: coefMap (overlapP ixels < requiredOverlapP ixels)← 0

17: return coefMap
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with the same idea of grid-stride loop and one-to-one mapping from an input to an

output. Line 5 also requires a simple one-to-one mapping GPU kernel to compute

the denominator part for A. We divide localSumA2 element-wise (notated with ./)

by overlapP ixels to ensure a correct normalization factor for the area where T does

not overlap wholly with A. Note that denomA should be non-negative; however, it

may contain negative values because of numerical errors [24]. Therefore, whichever

values of denomA that are negative will be replaced with zero.

Similarly, the denominator part of T can be computed from Lines 6 to 9. Here, we

flip T in both dimensions with function FlipMatrix (Algorithm 10) to create rotatedT

(the reversed template). This is done to match the numerator part of Equation 6.1,

which can be done by a convolution between A and rotatedT .

Next, Lines 10 to 12 compute the above convolution using Fourier Transform.

Here, we ignore the detail of creating and executing plans using cuFFT because it

has been explained in Algorithm 1. Although direct convolution in the spatial domain

can be used for small sizes of A and T , for large sizes and for the case where the sizes

of T and A are the same, the convolution is done more efficiently with multiplication

in the frequency domain. Note that we may want to zero-pad T and A to have the

sizes of the power of two using Algorithm 9 before computing the Fourier Transform

to speed up the computation. After that, xcorrTA needs to be resized back to

(MX,MY ). When using cuFFT library function for the backward transform, we

also need to divide xcorrTA by its size to obtain correct result.

After that, Lines 13 to 15 compute the numerator and denominator of the coeffi-

cient map. This step closely follows Equation 6.1. Because all steps are element-wise

operation, we combined the computation from Lines 13 to 16 into a single kernel.

This is a concept known as kernel fusion [25], which can reduce the data movement

from and to the global memory. In addition, common operations such as calculating

thread indexes or kernel invocation are done only once. As a result, because there is

less redundancy, the execution time will be faster. Note that in Line 16, the value

in the coefficient map is set to 0 for the region that has the number of overlapped



32

pixels fewer than requiredOverlapP ixels. This step is necessary because coefficient

values in this region become increasingly unreliable owing to the small number of

pixels that overlap. This can result in large coefficient values that approach 1, which

would erroneously suggest a perfect match.

6.2 Computing the Local Sum

6.2.1 Row-wise Inclusive Scan

Scan is a popular operation for parallel algorithms. Mathematically, given an array

A with N elements such as [a0, a1, · · · , an−1] and a binary operator ⊕, an inclusive

scan operation returns the output array as [a0, (a0⊕a1), · · · , (a0⊕a1 · · ·⊕an−1)] [26].

For example, when ⊕ is the summation operator (+), each element in the output

array has the sum of all previous elements including itself.

Our approach of computing local sum follows Hillis and Steele’s formulation of

parallel scan with a double-buffered version [26]. This is a step-efficient algorithm

because the number of steps required to compute the scan for an array of size N is

O(logN) while the number of steps for a sequential implementation is O(N). An

example is shown in Figure 6.2 where the array of size 8 requires only 3 steps for

computing a scan.

We also expand the scan operation in our approach as follows. Given an array

A with N elements such as [a0, a1, · · · , an−1] and a binary operator ⊕, our scan

operation returns the output array of 2N − 1 elements as [a0, (a0 ⊕ a1), · · · , (a0 ⊕

a1 · · · ⊕ an−1), (a1 ⊕ a2 · · · ⊕ an−1), (a2 ⊕ a3 · · · ⊕ an−1), · · · , an−1]. This modification

is helpful when computing LocalSum in Section 6.2.2.

Algorithm 7 describes how to compute the scan for each row of a given matrix.

Lines 1 to 4 prepare parameters and launch the Matrix-Row-Scan-Kernel kernel.

The parameters include the number of threads per block, the number of blocks needed,

and the size of shared memory. The number of threads per block is chosen to be the

maximum block size (1024 threads) in our GPU. The number of blocks are the number
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Fig. 6.2.: Hillis and Steele’s inclusive scan algorithm.

of rows in the input matrix A. Shared memory is dynamically allocated with size of

twice NX with the purpose of double buffering.

In Matrix-Row-Scan-Kernel, Lines 7 to 12 compute thread indexes. Note

that we check if a thread index is out-of-boundary in Line 9. Line 13 initializes

the pointers to the double buffer in the shared memory temp: one for input pin

and the other for output pout. Lines 14 to 15 load data from global memory to

shared memory. Function syncthreads() is needed here to ensure that all threads

have finished loading data. Lines 16 to 24 perform the scan for a row. In each

iteration, pointers pin and pout are swapped. After that, only the threads that have

indexes larger than offset are active and compute the summation. We also requires

syncthreads() before starting a new iteration. When the for loop is done, we write

data from shared memory to output in Line 25.

Typically, a row scan operation stops here. However, we also need to compute

remaining elements from index NX to MX−1. Here, we take advantage of the result

that is already in shared memory and write data to output (Lines 26 to 29).
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Algorithm 7 MatrixRowScan (A,NX,NY )

Note: A refers to an input matrix with size (NX,NY ). The output (overwritten

to A) is a matrix of size (MX,MY ) where MX = 2NX − 1 and MY = NY .

1: threads← 1024

2: blocks← NY

3: smemSize← 2×NX × sizeof(float)

4: Matrix-Row-Scan-Kernel ≪ blocks, threads, smemSize ≫ (A, NX, NY ,

MX )

5: return A

6: function Matrix-Row-Scan-Kernel(A,NX,NY,MX)

7: extern shared float S[]

8: tx← threadIdx.x

9: if tx ≥ NX then . out-of-boundary

10: return

11: end if

12: gtid← blockIdx.x×MX + tx

13: pout← 0, pin← 1

14: S[pout×NX + tx]← A[gtid]

15: syncthreads()

16: for offset = 1; offset < NX; offset <<= 1 do

17: pout← 1− pout, pin← 1− pout

18: if tx ≥ offset then

19: S[pout×NX + tx]← S[pin×NX + tx] + S[pin×NX + tx− offset]

20: else

21: S[pout×NX + tx] = S[pin×NX + tx]

22: end if

23: syncthreads()

24: end for
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Algorithm 7, continued

25: A[gtid]← S[pout×NX + tx]

26: endV alue← S[pout×NX +NX − 1

27: gtid← gtid+NX

28: if tx < NX − 1 then

29: A[gtid]← endV alue− S[pout×NX + tx]

30: end if

31: end function

6.2.2 Local Sum

To compute a running sum in 2D, we need to perform MatrixRowScan twice.

Figure 6.3 shows the data flow for each step of Algorithm 8. First, zero-padding is

done for the input matrix of size (NX,NY ), making a new matrix of size (MX,MY )

where MX = 2NX − 1 and MY = 2NY − 1. Line 2 will call function ZeroPadding,

which will call ZeroPaddingKernel in Algorithm 9. After that, MatrixRowScan is

called to perform a scan for each row. Now we need to perform a scan for each column

as well. However, to maintain coalesced memory accesses, we need to transpose the

matrix and then apply MatrixRowScan again. The matrix transpose kernel is adopted

from [27]. The result is transposed again to have size (MX,MY ).

6.3 Supplementary Kernels

6.3.1 Zero-padding

The zero-padding kernel introduced in this section is for a 3D matrix (a volume)

for generality, which means it is also applicable to zero-padding a 2D matrix.

Figure 6.4 demonstrates the zero-padding procedure for a small volume. Let

(AX,AY,AZ) = (3, 2, 2) be the size of an input volume. The data layout for this 3D
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Algorithm 8 LocalSum (A,NX,NY )

Note: A refers to an input image of size (NX,NY ). The output is a matrix

of running sum for A with the size of (MX,MY ) where MX = 2NX − 1 and

MY = 2NY − 1.

1: cudaMemset (Apad, 0, sizeof(float)×MX ×MY )

2: ZeroPadding(A,NX,NY, 1, Apad,MX,MY, 1)

3: MatrixRowScan(Apad,NX,NY )

4: Apad← ApadT

5: MatrixRowScan(Apad,MY,MX)

6: Apad← ApadT

7: return Apad

Fig. 6.3.: Data flow for LocalSum.
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volume array in a GPU is linearly numbered from 1 to 12. We would like to zero-pad

this volume to the size of (BX,BY,BZ). In Figure 6.4, this is chosen conveniently as

(5, 3, 3). Zero-padding is often used to speed up FFT computation, which is optimized

for dimensions in the power of two.

Fig. 6.4.: Zero-padding example for an input volume of size (3, 2, 2).

To prepare for zero-padding, the memory of the padded 3D array must be ini-

tialized to an array of BX × BY × BZ zeros using the cudaMemset function from

CUDA SDK. After that, Algorithm 9 copies data from the input 3D array of size

(AX,AY,AZ) to the padded 3D array.

Lines 1 to 3 calculate global indexes on each dimension. Line 4 checks if those

indexes are within the bounds of (AX,AY,AZ,BX,BY,BZ). Lines 5 and 6 calculate

the global memory addresses relative to the sizes of A and B. Finally, Line 7 performs

the copy of the elements.
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Algorithm 9 ZeroPaddingKernel (A,AX,AY,AZ,B,BX,BY,BZ)

Note: A is a pointer to the input volume, B is a pointer to the output volume,

(AX,AY,AZ) is the size of A and (BX,BY,BZ) is the size of B

1: tx← blockIdx.x× blockDim.x+ threadIdx.x

2: ty ← blockIdx.y × blockDim.y + threadIdx.y

3: tz ← blockIdx.z × blockDim.z + threadIdx.z

4: if tx < AX,BX and ty < AY,BY and tx < AZ,BZ then

5: gtidA← tz × AX × AY + ty × AX + tx

6: gtidB ← tz ×BX ×BY + ty ×BX + tx

7: B[gtidB]← A[gtidA]

8: end if

This kernel can also reverse a zero-padded matrix back to its non-padded version

by simply swapping the parameters (A,AX,AY,AZ) and (B,BX,BY,BZ).

6.3.2 Flip a Matrix in 2D

Flipping a matrix in 2D is needed to reverse a template image in Line 6 in Algo-

rithm 6. Figure 6.5 shows an example of flipping a matrix of size 3× 2.

Fig. 6.5.: Example of flipping a matrix in 2D.

Algorithm 10 expanded the example of reversing an array with CUDA in [28].

Lines 1 to 4 prepare parameters to call Flip-Matrix-Kernel. Shared memory is

dynamically allocated to have the size of a row in the input matrix. The key point

in this kernel is to load data from global memory to shared memory in reverse order

(Lines 13 - 14). Having data for each row in A reversed in shared memory allows
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coalesced memory writing to output B. Note that reversing in the column dimension

is done by calculating the output index in Line 15. The block index of the input is

blockIdx.x while the block index of the output is gridDim.x− 1− blockIdx.x.

Algorithm 10 FlipMatrix (A,NX,NY )

Note: A refers to an input matrix with size (NX,NY ). The output is a matrix of

the same size.

1: threads← 1024

2: blocks← NY

3: smemSize← NX × sizeof(float)

. B is the output and assumed to be allocated with size (NX,NY )

4: Flip-Matrix-Kernel ≪ blocks, threads, smemSize≫ (A, B, NX )

5: return B

6: function Flip-Matrix-Kernel(A, B, NX)

7: extern shared float temp[]

8: tx← threadIdx.x

9: if tx ≥ NX then . out-of-boundary

10: return

11: end if

12: gtid← blockIdx.x×MX + tx

13: temp[NX − 1 + tx]← A[gtid]

14: syncthreads()

15: out← (gridDim.x− 1− blockIdx.x)×NX + tx

16: B[out]← temp[tx]

17: end function
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7. AO-OCT 3D VOLUME REGISTRATION ALGORITHM

7.1 General Steps

Because of eye motion artifacts in AO-OCT volume images, simply aligning a

target volume to a reference volume as one piece does not yield a good result. As

shown in Figure 2.2, eye motion is more prominent between subsequent fast B-scans

(along the y-direction). The reason for this is that the acquisition time for each fast

B-scan is so quick that eye motion does not typically occur within one fast B-scan.

Therefore, our goal is to align each fast B-scan of a target volume to a correct position

in a reference volume by determining shift amounts in 3D as (∆x,∆y,∆z).

However, searching the whole reference volume per fast B-scan incurs a huge

computational cost. Therefore, we perform a coarse-to-fine approach to reduce search

space. Here we summarize processing steps to register images and later explain each

step in detail.

1. Zero padding fast B-scans

2. Coarse registration using sampling and phase correlation

3. Fine registration (Stripe-wise registration) using phase correlation

4. Filter the result to reject incorrect match

5. Visualization of registered result

7.2 Zero-padding Fast B-scans

There are many reasons for zero padding images. First, phase correlation considers

an image to be wrapped around, and thus, it is suggested that zero padding or a
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window function like Hanning window should be applied to eliminate the boundary

effect. In our approach, zero padding is done on each fast B-scan (the z and x axes).

Second, the target image and the reference image in phase correlation computation

need to have the same size. Third, we would like to pad the size of image to the

power of two because the FFT algorithm performs best for that size, especially for

GPU implementation.

7.3 Coarse Registration using Sampling and Phase Correlation

Next, in our coarse registration approach, instead of finding shift amounts of each

fast B-scan, we select some samples in a target volume across the y-axis, where each

sample consists of three consecutive fast B-scans. The samples are not adjacent but

apart from each other with a uniform distance. We then apply the phase correlation

algorithm to each sample to find its correct position in a reference volume image.

Using the shift amounts (∆x,∆y,∆z) of the registered samples, we can interpolate

to predict the expected (∆x,∆y,∆z) for each fast B-scan of the target volume.

For example, assuming that there are 216 fast B-scans in a target volume, which

are indexed from 1 to 216, we can select 8 samples [ (1,2,3); (31,32,33); (62,63,64); · · · ;

(214,215,216) ]. If sample (1,2,3) has ∆y = 10 and the sample (31,32,33) has ∆y = 42,

we can predict the fast B-scans indexed from 1 to 32 to have linearly increasing ∆y

from 10 to 42. The phase correlation step is similar to the one described in Section

4.3. However, we perform those steps in a 3D fashion. In addition, phase correlation

requires two volumes of the same size. Therefore, in order to phase correlate a sample

stripe with a reference volume, additional zero padding on the y-axis is needed for

each sample.

We do coarse registration first (with multiple fast B-scans per sample) instead of

going directly to fine registration (only use one fast B-scan) because of many reasons.

First, this will avoid mis-registration due to the structural similarity of the images

(different fast B-scans look very similar). Second, localizing the match position allows
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us to reduce the search space for each fast B-scan during the fine registration stage.

Note that our 3D phase correlation algorithm is very computationally intensive for a

large volume size. In our case, it can be 216×318×180, which results in more than 12

million voxels (3D pixels). Because the correlation-based registration method has the

time complexity of O(N logN) where N is the total number of voxels, reducing N will

gain a more than linear speedup. In summary, overall benefits of coarse registration

are higher accuracy and less computation cost for the fine registration step.

7.4 Fine Registration (Stripe-wise Registration)

This step performs registration for individual fast B-scans of a target volume,

which would allow us to offset the effect of eye-motion as much as possible. We will

denote a fast B-scan that we are referencing as β in the following paragraphs.

With the prediction of shift amounts from the coarse registration step, we can

significantly reduce search space for β. Instead of searching the whole reference

volume, we can now search in a sub-volume consisting of a few consecutive fast B-

scans of the reference volume. However, we need to make sure that this sub-volume

indeed contains β.

Let us denote shift amount for β predicted from coarse registration as (∆xp,∆yp,∆zp).

Experimentation on various volumes shows that this shift prediction is usually very

close (within ±3 pixels in the y-direction) to the actual shift amount. On a target

volume that has extreme eye motion, error in prediction can go up to ±10 pixels in

the y-direction. Therefore, to make sure that the chosen sub-volume contains β, we

select a sub-volume in the reference image that consists of fast B-scans that range

in [∆yp − wy,∆yp + wy] where wy is a window size typically chosen as 16. Note

that we only limit the boundary of the sub-volume on y-direction but not x and z

directions because of two reasons. First, prediction error on x and z directions varies

widely. Second, memory layout of 3D matrix in the GPU allows easier slicing on the

y-direction.
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After that, we perform phase correlation between β and the selected sub-volume

to find (∆x,∆y,∆z) in the same manner as the coarse registration step. However,

because this ∆y is the shift amount in relative to the sub-volume rather than the

reference volume, we must add to ∆y the corresponding offset (∆yp − wy).

7.5 Filter the Results to Reject Incorrect Match

After the fine registration step, there may appear incorrect registration results for

some fast B-scans. This usually happens for those fast B-scans in a target volume

which do not overlap on any of those in the reference volume. We can detect these fast

B-scans by comparing their shift amounts with the B-scans in the neighborhood. If the

difference in the shift amount is too extreme, it is assumed to be an incorrect match.

After that, we can exclude those out-of-bound fast B-scans when reconstructing a

registered volume.

7.6 Visualization of the Registered Result

Now, we can shift each fast B-scan in a target volume based on the calculated

(∆x,∆y,∆z) and reconstruct a registered volume. In addition, projection images

(slow B-scan and C-scan) can be made to visualize the effect of registration. Figure

7.1 demonstrates the registration of one stripe of fast B-scans in a target volume. After

performing registration, the match position is found at (∆x,∆y,∆z) = (11, 49, 70).

By registering all fast B-scans in a target volume, we can reconstruct a registered

volume with the projections shown in Figure 7.1 (c) and (f). The black gaps appear in

the y-direction because eye motion in that direction was not linear during acquisition

of the volume. Also, when we reconstruct a volume by moving each fast B-scan to

its (∆x,∆y,∆z) location, it may cause overlapping.
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Fig. 7.1.: Registration of one stripe of fast B-scans in a target volume in 3D. To

visualize registration, we show projection images here. (a) Slow B-scan projection of

a target volume, with the yellow stripe to be registered. (b) Slow B-scan projection

of a reference volume, with the registered location of the selected stripe. (c) Slow B-

scan projection of the entire registered volume. (d) C-scan projection of the original

target volume with the yellow stripe to be registered. (e) C-scan projection of the

reference volume with the yellow registered stripe. (f) C-scan projection of the entire

registered volume.
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8. IMPLEMENTATION IN GPU

8.1 Implementation Overview

Among a series of 3D volumes captured from the same retina area, one volume

with the highest quality is chosen to be a reference volume. This can be done either

manually or automatically by finding the volume with the greatest image clarity and

minimal eye motion artifacts. The task then is to register each target volume by

aligning its fast B-scans to the reference volume.

The implementation takes advantage of both CPU and GPU depending on the

type of computations required. For example, for tasks with large data size like FFT,

GPU is utilized while for tasks with small data size like interpolation, CPU is uti-

lized. In addition, we perform caching of duplicate computations to avoid redundant

computation. Specifically, phase correlation requires two forward FFTs (one for a

target volume and the other for a reference volume) and one backward FFT (for the

phase correlation). However, we can just compute the forward FFT for a reference

volume once and keep reusing the result.

The overall algorithm is summarized in Algorithm 11.

8.2 Memory Allocation and Pre-computation

Because the data initially resides on the CPU side, we need to copy all of the

volumes to the GPU. The data of double precision will be converted to single precision

floating point numbers to reduce the data size by half. In this pre-computation step,

we first copy the reference volume and apply zero-padding for each fast B-scan. The

effect of zero-padding is to avoid the boundary effect of phase correlation. In addition,

FFT algorithm in GPU works best for the size of power of two. For zero-padding, we
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Algorithm 11 3D Registration

Note: Stripe width refers to the number of fast B-scans chosen as a target volume

to be used in a group for phase correlation. In coarse registration, the stripe width

is 3, while in fine registration, the stripe width is 1.

1: Memory allocation and pre-computation

2: for each target volume do

. Coarse Registration

3: for each sample of stripe width 3 do

4: (∆xp,∆yp,∆zp)← PhaseCorrelation (sample, reference volume)

5: end for

6: Shift prediction

. Fine Registration

7: for each fast B-scan β in the target volume do

8: Determine reference sub-volume based on (∆xp,∆yp,∆zp)

9: (∆x,∆y,∆z)← PhaseCorrelation (β, sub-volume)

10: Offsetting ∆y based on sub-volume index

11: end for

12: Filter the registration results

13: end for
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utilized Algorithm 9 with the following input parameters: AX is the A-line length,

AY is the number of A-lines per fast B-scan, and AZ is the number of fast B-scans

per volume. The output parameters BX and BY will be chosen as a power of two.

However, BZ is chosen as the closest multiple of 32 to avoid requiring too much

memory.

Knowing the size of the reference volume, we can allocate required memories for

the following items:

• The reference volume and its DFT

• A series of sub-volumes in the reference volume and their DFTs (to be intro-

duced later)

• A target volume and its DFT

• The plans for cuFFT for forward transformations and backward transformations

• Outputs for the Find-Max-Index-Kernel kernel

After this, each target volume will be copied from the host to the GPU to the

allocated memory sequentially. The coarse registration step begins in the next section.

8.3 Coarse Registration

To choose fast B-scan indexes for the samples (as mentioned in Section 7.3) in a

target volume, we can simply create a linearly-spaced array as shown in Algorithm 12.

This is similar to the function linspace from MATLAB 1. For example, assuming that

our target volume has 216 fast B-scans, we can call LinearSpace(0, 213, 10) to create

10 sample indexes for stripes of width 3. The result will then be samplingIndexes =

[0, 24, 47, 71, 95, 118, 142, 166, 189, 213]. Each sample will consist of three consecutive

fast B-scans. For example, the sample at index 213 will consist of fast B-scans of

indexes [213, 214, 215].

1http://www.mathworks.com/help/matlab/ref/linspace.html (Last Date Accessed: May 2016)
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For each sample, we apply the PhaseCorrelation algorithm as mentioned in Section

5.1. Note that because PhaseCorrelation requires that a target volume and a reference

volume have the same size, zero-padding is also needed for each selected sample.

Then, shifted amount ∆yp will be recorded as sampledV alues. Figure 8.1 shows

sampledV alues as solid dots. We expect the dots to follow an upward linear trend

because of the order of the acquired B-scans. However, some dots fall out of this

trend if they are out-of-bound. If this happens, the registration algorithm would not

find a good match position. This is visible for the leftmost dot (of bScanIdx = 0) in

Figure 8.1.

Algorithm 12 LinearSpace (start, end, numSamples)

1: interval← (end− start)/(numSamples− 1)

2: for i = 0; i < numSamples; i+ + do

3: samplingIndexes[i] = round(start+ interval × i)

4: end for

5: return samplingIndexes

Therefore, we need to detect the dots that are not in the trend. Algorithm 13

demonstrates this process. Similar to a median filter, this algorithm detects abnormal

points based on the distances between those points and their neighbors in the first

step (Lines 2 - 8). A point is good if distances (dL and dR) are positive (because

we are expecting an upward linear trend) and smaller by a specified tolerance (near

neighbors). Typically, the tolerance is chosen to be twice the distance/interval be-

tween the sampled indexes. In this first step, however, some points around a spike

may be marked as not good when requiring both dL and dR to be within a threshold

(Line 5). Thus, the second step finds those good points that are accidentally marked

as not good in the first step. We can do this by relaxing the requirement in Line 12.

After this step is done, the function finally returns all the points that are detected as

spikes.
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Fig. 8.1.: Frame prediction based on sampled B-Scans.

For example, in Figure 8.1, after running the first step of SpikeDetection on

sampledV alues, the first and second data points are detected as spikes. By ap-

plying the second step in SpikeDetection, the second data point will be recovered,

specifically, marked as a good point. As a result, the only point that is marked as

not good is the first point.

Now, the remaining points that are not marked as spikes are referred to as good

points. For those good points, we can interpolate to complete the shift prediction

for each fast B-scan across the target volume in the next fine registration stage.

This is essential because we can limit the search space significantly, thereby reducing
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computation time. For a volume of size 512 × 512 × 512, coarse-to-fine approach is

about 5000× faster than going directly to the fine registration step.

Algorithm 13 SpikeDetection (A, tolerance)

Note: A is the array that we need to detect the spikes. tolerance is the threshold

to decide if a point is good or bad.

1: Mark all points in A as not good.

2: for i = 1; i < input.length− 2; i+ + do . First step

3: dL← distance between A[i] and A[i-1]

4: dR← distance between A[i+1] and A[i]

5: if 0 < dL < tolerance and 0 < dR < tolerance then

6: Mark A[i] as good.

7: end if

8: end for

9: for each A[i] that is marked as not good do . Second step

10: dL← distance between A[i] and A[i-1]

11: dR← distance between A[i+1] and A[i]

12: if 0 < dL < tolerance or 0 < dR < tolerance then

13: Mark A[i] as good.

14: end if

15: end for

16: return indexes of A that is not good.

8.4 Fine Registration

This step performs a 3D stripe-wise registration similar to the coarse registration

step. However, there are two changes. First, we register each individual fast B-scan

(denoted as β) in a target volume instead of a group of three. Second, we reduce

search space to a sub-volume in the original reference volume rather than using the
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whole volume. In this way, the entire volume is partitioned into overlapping sub-

volumes that, for example, are 32 frames wide and spaced every 16 frame. A frame

consists of one fast B-scan.

Fig. 8.2.: Fine registration using a sub-volume from the reference volume.

A sequence of many sub-volumes is apart from each other by a distance of 16

frame interval. Figure 8.2 shows an example when the original reference volume has

128 frames with fast B-scan indexes from 0 to 127. Then, we have seven sub-volumes

with fast B-scan indexes as follows: (0 − 31), (16 − 47), (32 − 63), (48 − 79), (64 −

95), (80 − 111), and (96 − 127). In the pre-computation step in Section 8.2, we can

compute the FFTs of these sub-volumes, thus avoiding duplicate computations during

PhaseCorrelation. Note that these sub-volume are chosen to be overlapped to one

another because of the following reason. For each fast B-scan β in the target volume,
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we can choose a reference sub-volume such that the predicted position is as near the

center of chosen sub-volume as possible (Figure 8.2). Algorithm 14 shows how to

select a sub-volume based on ∆yp.

Algorithm 14 DetermineSubVolume (bScanIdx, totalFrames, subV olSize)

Note: bScanIdx is the B-scan index that we would like to find the correct sub-

volume index. totalFrames is the total number of fast B-scans in the reference

volume, subV olSize is the size of the sub-volume.

1: quarterSub← subV olSize/4

2: numQuarters← dtotalFrames/quaterSubse

3: numSubV ols← b(totalFrames− 1)/(subV olSize/2)c

4: quarterIdx← bScanIdx/quarterSub

5: if quarterIdx < 3 then

6: return 0 . Return the first sub-volume

7: else

8: if quarterIdx >= numQuarters− 3 then

9: return numSubV ols− 1 . Return the last sub-volume

10: else

11: return b(quarterIdx− 3)/2c+ 1

12: end if

13: end if

Now we can execute Line 9 in Algorithm 11 to find (∆x,∆y,∆z) by phase correla-

tion between β and the selected sub-volume. Note that ∆y calculated here is relative

to this sub-volume rather than to the original reference volume. Therefore, we must

compensate by adding a corresponding offset to ∆y. After this, the shifted amount

is recorded for each fast B-scan (shown as x markers in Figure 8.3).
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8.5 Filter the Results

However, there are some spike noises either because of out-of-bound fast B-scans or

incorrect registration from PhaseCorrelation. The latter happens when the maximum

peak is found at the wrong place. Therefore, we can filter the result to detect these

spikes using a modified version of SpikeDetection in Algorithm 13. In this modified

version, the input in Line 1 is an array of 3D points, each specifying shifted amount

(∆x,∆y,∆z) for a fast B-scan. The distance between two points a and b can be

Euclidean distance ‖a − b‖. Because we expect eye movement to be smooth, the

tolerance value is empirically chosen to be equal to 8 (pixels). A small tolerance will

overly detect spike noise, while a high tolerance will miss detecting noise. As we reject

the points that are detected as noise, missing points will be filled in by interpolating

from remaining values. The missing points at the left and right boundaries are also

calculated by extrapolation. The detail is shown in Algorithm 15.

Figure 8.3 shows filtered results as red lines. Note that out-of-bound B-scans from

indexes 0 to 19 are fixed.
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Algorithm 15 ShiftCorrection (x, y, z, tolerance)

Note: x, y, z are the three arrays from (∆x,∆y,∆z), tolerance is the parameter to

be passed to SpikeDetection in Algorithm 13.

1: badPoints← SpikeDetection((x, y, z), tolerance)

. Extrapolation at the left boundary

2: yStart← Find the first data point in y that has value 0.

3: x[0..yStart]← x[yStart]

4: y[0..yStart]← [−yStart+ 1,−yStart+ 2, · · · ]

5: z[0..yStart]← z[yStart]

. Extrapolation at the right boundary

6: yEnd← Find the first data point in y that has value equal to y.length

7: x[yEnd..end]← x[yEnd]

8: y[yEnd..end]← [y[yEnd], y[End] + 1, · · · ]

9: z[yEnd..end)← z[yEnd]

10: (xf, yf, zf)← Interpolate badPoints using remaining points in (x,y,z).

11: return (xf, yf, zf)
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(a) ∆x shift (b) ∆y shift

(c) ∆z shift.

Fig. 8.3.: Shift amount before and after filtering.
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9. EXPERIMENTAL RESULTS

9.1 Description

We have tested our algorithm on various data sets. The results shown here are for

a sequence of 12 volumes of size 432× 180× 216 each. To visualize the effect of our

proposed 3D registration, some projection images including C-scans and slow B-scans

are created. In Figure 9.1 and Figure 9.2, the first row shows projection images before

registration and the second row shows projection images after registration. Out-of-

bound fast B-scans are also excluded. Vol 10 is chosen as the reference volume, to

which other volumes (Vol 3, Vol 6, and Vol 11) are registered.

Fig. 9.1.: Registration results visualized on C-scans. Volumes were registered to Vol

10.
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Fig. 9.2.: Registration results visualized on slow B-scans. Volumes were registered to

Vol 10.

Note that in this data set, Vol 3 and Vol 11 contain eye motion artifacts, which

are visible on their C-scans. In a previous stripe-wise registration method with nor-

malized cross-correlation using only C-scans by Kocaoglu el al. [1,29], noisy C-scans

during micro-saccadic eye movements do not provide reliable registration. However,

as our 3D POC utilizes all information from each fast B-scan rather than from the

projection image, those B-scans within an eye motion area can be tracked and reg-

istered. Figure 9.3 shows the effectiveness of our 3D approach when capturing eye

motion appeared in Vol 11. For areas without eye motion, the differences in shift

amounts calculated between 3D POC and Kocaoglu’s method are within ±1 pixel for

∆x and ∆y. Another advantage of 3D POC is that the whole volume is registered

without the need of creating projection images or processing extra steps like done

in [10]. The Kocaoglu’s method consists of two separate steps, namely axial regis-
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tration and lateral registration, which use projection images such as slow B-scan and

C-scan, respectively.

(a) ∆x shift (b) ∆y shift

Fig. 9.3.: Comparison between 3D POC with previous method by [10].

9.2 Registration Accuracy

To quantify the effectiveness of image registration, we create a sequence of aver-

aged C-scans similar to the method described in [30]. Note that for easy visualization,

averaged C-scans are used instead of averaged volumes. To compare an averaged C-

scans to a reference C-scan, the following two metrics are used: Image Sharpness

Ratio (ISR) and Structural Similarity Index (SSIM). Image sharpness for an image

(say I) is estimated from image gradients calculated by ‖∇I‖ 1. ISR is the ratio

of image sharpness between an averaged C-scan to a chosen reference C-scan. The

other metric SSIM is used to measure image quality based on three characteristics

including luminance, contrast, and structure 2. Figures 9.4(a) and 9.4(b) plot these

metrics as a function of the number of volumes used for averaging. As a baseline, we

also show ISR and SSIM in the case of a simulated image sequence created by rand

1http://www.mathworks.com/matlabcentral/fileexchange/32397-sharpness-estimation-from-image-
gradients (Last Date Accessed: June 2016)
2http://www.mathworks.com/help/images/ref/ssim.html (Last Date Accessed: June 2016)
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function in MATLAB, which outputs uniformly distributed random numbers. With

registration, the averaged image maintains much higher ISR and SSIM values com-

pared to without registration. This difference is visually evident in the corresponding

averaged C-scans in Figure 9.5.

(a) ISR (b) SSIM

Fig. 9.4.: Metrics to quantify image registration.

Fig. 9.5.: Averaged C-scan with and without registration compared with the reference

C-scan.
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9.3 Registration Speed

One drawback of using 3D POC is that the computation time is slower as com-

pared to the Kocaoglu’s method, which was done with 2D projection images (3D

POC is about 3× slower). However, with GPU implementation, the time is reduced

significantly. To measure speedup, we compare the execution time to register one

target volume to a reference volume between two implementations of 3D POC. The

first version is a serial program in MATLAB while the second is a parallel program

in CUDA/C++. The experiment is performed on a computer with an Intelr Core

i7 5930K CPU @ 3.50 GHz, 32 GB RAM, and a Titan X GPU. The machine runs a

64-bit Windows operating system. Table 9.1 records the execution time for various

volume sizes. For the GPU implementation, the time includes time to copy a target

volume from the host to the GPU, perform the computation, and copy the result

back to the host.

Table 9.1: Execution time in seconds for CPU version (in MATLAB) and GPU version

(in CUDA) with the corresponding speedup. The time shown includes the mean and

standard deviation from 10 test runs

Size MATLAB (CPU) CUDA (GPU) Speedup

64× 64× 64 0.73± 0.17 0.04± 0.00 17.39×

128× 128× 128 3.25± 0.20 0.17± 0.02 19.32×

256× 256× 256 21.63± 0.55 0.80± 0.08 27.16×

512× 256× 256 43.22± 0.65 1.46± 0.14 29.65×

256× 512× 256 43.89± 0.92 1.54± 0.19 28.56×

256× 256× 512 43.65± 0.62 1.60± 0.20 27.22×

512× 512× 512 199.30± 2.59 5.93± 0.66 33.62×

With the pre-computation (caching) technique, a reference volume only needs to

be loaded and processed once at the beginning of the algorithm. Thus, the total
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execution time, which includes the time from reading data from hard disk to the

time when all volumes are registered, is reduced. This result demonstrates that large

speedups are obtained from our new CUDA implementation, massively parallel GPU

hardware, and the implementation of caching in the algorithm.
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10. SUMMARY

10.1 Future Work

As the registration method described in this thesis is for a pixel-level shift, an

improvement of the algorithm is to use an interpolation technique to align the target

volume with a sub-pixel resolution. This will allow a higher resolution image when

combining data from various volumes. In addition, other techniques to decrease

registration time for GPU can be explored such as overlapping data transfer and

kernel execution with streams. Furthermore, the expansion of the implementation

for multiple GPUs could be considered. The faster the registration time is, the more

suitable it is for on-the-fly real-time applications.

10.2 Conclusion

The thesis describes a framework for a stripe-wise 3D registration method with

phase correlation for 3D AO-OCT data. With various techniques such as pre-computation,

coarse to fine registration, and GPU implementation, the algorithm achieves not only

high registration accuracy but also significant speedup compared to CPU implemen-

tation. The thesis also described a spike noise detection algorithm, which was used

in both ∆y prediction and final result filtering. Using our 3D registration method,

we can even track fast eye motions such as micro-saccades, which is an important im-

provement over a previous stripe-wise registration method with 2D projection images.

GPU implementations for two popular correlation-based image registration methods,

POC and NCC, are also included in detail.
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