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A novel method to accurately locate and count 
large numbers of steps by photobleaching

ABSTRACT  Photobleaching event counting is a single-molecule fluorescence technique that 
is increasingly being used to determine the stoichiometry of protein and RNA complexes 
composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits 
with fluorophores, activating them, and subsequently observing as the fluorophores photo-
bleach, one obtains information on the number of subunits in a complex. The noise properties 
in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as 
fluorophores stochastically photobleach, noise properties of the time trace change stochasti-
cally, and these varying noise properties have created a challenge in identifying photobleach-
ing steps in a time trace. Although photobleaching steps are often detected by eye, this 
method only works for high individual fluorophore emission signal-to-noise ratios and small 
numbers of fluorophores. With filtering methods or currently available algorithms, it is pos-
sible to reliably identify photobleaching steps for up to 20–30 fluorophores and signal-to-
noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in pho-
tobleaching time traces that takes into account stochastic noise variation in addition to 
complications such as overlapping photobleaching events that may arise from fluorophore 
interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleach-
ing steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more fa-
vorable noise profiles, and is computationally inexpensive.

INTRODUCTION
Fluorophores photobleach when exposed to light over time. That is, 
they irreversibly photochemically transition to a state no longer de-
tectable by fluorescence (White and Stelzer, 1999; Lippincott-

Schwartz et al., 2003). Although photobleaching can be a nuisance 
in single-particle tracking experiments, it is critical to other experi-
mental approaches, such as fluorescence recovery after photo-
bleaching (Lippincott-Schwartz et al., 2003), photoactivated local-
ization microscopy (PALM), and photobleaching event counting 
(Lippincott-Schwartz et  al., 2003; Leake et  al., 2006; Ulbrich and 
Isacoff, 2007; Coffman and Wu, 2012). As its name implies, photo-
bleaching event counting is used to enumerate molecules by moni-
toring how the light intensity in some region decreases by quanta as 
individual fluorophores photobleach (Shu et al., 2007). This can be 
very useful in quantifying the stoichiometry of biological complexes 
in live cells (Leake et al., 2006).

Briefly, photobleaching event counting works by tagging biomol-
ecule subunits—often genetically (Durisic et al., 2014)—with fluoro-
phores. Fluorophores within an illuminated region of interest (ROI) are 
then all simultaneously activated and monitored as they subsequently 
photobleach. As each fluorophore photobleaches, the fluorescence 
intensity over a ROI drops in a step-like pattern. Each step-like 
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Brute-force application of many methods, including our own, that 
rank-order models by evaluating and comparing model posteriors 
for all possible models (i.e., all possible numbers of steps with any 
possible step location) is computationally prohibitive. Instead, our 
method is efficient in its implementation because it uses a precursor 
algorithm to eliminate from consideration a large number of unlikely 
models. It then considers and compares only probable models.

This two-step approach reduces the computational complexity 
and makes it possible for us to apply our method to photobleaching 
traces with as many as 100+ fluorophores, depending on the level 
of noise. In fact, using our method, we show that even for low SNR, 
we can count up to 50+ fluorophores and locate photobleaching 
events in a time trace with an accuracy surpassing that of methods 
currently available. We also show that we can extract biological con-
clusions by applying our method to sample experimental data sets.

We previously proposed a solution to the single-molecule count-
ing problem using PALM (Rollins et al., 2015), in which we inferred 
the (stochastic) blinking properties of fluorophores “on the fly” in 
order to avoid overcounting fluorophores—and thus protein sub-
units—in an ROI. Although PALM provides greater spatial resolution 
than photobleaching event counting, allowing us to characterize 
complexes localized down to the tens of nanometers (Watanabe 
et al., 2011), PALM analysis is computationally intensive. The advan-
tage of photobleaching, and the reason we focus on this here, is that 
photobleaching event counting has the potential to reveal the stoi-
chiometry of complexes involving hundreds of proteins. Unfortu-
nately, current analysis methods have limited its applicability to 
complexes with only a handful of subunits. As we show, complicated 
fluorophore photophysics can be accommodated in our approach. 
Thus our work even suggests that future experiments may want to 
focus on biological problems, such as characterizing larger protein 
complexes, rather than engineering photophysical properties of 
fluorophores used in photobleaching event counting to reduce 
blinking, which may now be treated theoretically in postprocessing.

METHODOLOGY
A brief sketch of our approach
A photobleaching time trace is a data set consisting of fluorescence 
intensity measurements taken at constant time intervals ∆t and 

decrease corresponds to a single or possibly multiple overlapping 
photobleaching events. The total number of photobleaching events 
can then be used, in principle, to determine the total number of fluo-
rophore-tagged molecules present within the ROI (Das et al., 2007).

For instance, photobleaching event counting has been used to 
quantify the stoichiometry of a number of complexes involved in the 
bacterial flagellar switch (FliM; Delalez et al., 2010), eukaryotic fla-
gella (Engel et al., 2009), and the point centromere (Lawrimore et al., 
2011; Coffman et al., 2011). It also has been used to determine the 
stoichiometry of complexes and biomolecules such as mammalian 
neurotransmitter receptors (McGuire et  al., 2012), human calcium 
channels (Demuro et al., 2011), transmembrane α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor-regulatory proteins 
(Hastie et  al., 2013), T4 bacteriophage helicase loader protein 
(Arumugam et al., 2009), bacterial oxidative phosphorylation com-
plexes (Llorente-Garcia et al., 2014), microRNAs in processing bodies 
(Pitchiaya et al., 2012, 2014), RNAs in a bacteriophage DNA-packag-
ing motor (Shu et al., 2007), and other membrane protein and pro-
tein complex stoichiometries (Leake et al., 2006; Das et al., 2007).

Although counting photobleaching steps is conceptually 
straightforward, the noise inherent to photobleaching traces makes 
it difficult to identify the number of steps and their location (Figure 1). 
One key challenge is that the magnitude of the noise changes 
stochastically along with the number of active fluorophores. Thus a 
detection algorithm assuming constant noise properties is inappro-
priate for photobleaching.

In addition, noise also arises from background fluorescence 
(Ulbrich and Isacoff, 2007; Coffman and Wu, 2012), variable fluoro-
phore emission (Ulbrich and Isacoff, 2007), and fluorophore blinking 
(Bagshaw and Cherny, 2006) driven by core fluorophore instabilities 
(Drobizhev et  al., 2012). For this reason, photobleaching event 
counting is typically used only in systems with few fluorophores 
(<10), for which signal-to-noise ratio (SNR) is high. Here SNR is de-
fined as μf/σf, where μf and σf are the mean and SD of the emission 
intensity of the single fluorophore, respectively. For instance, in 
Ulbrich and Isacoff (2007), five subunits was the limit past which de-
tection of discrete steps, done by eye, became difficult. Figure 1 
shows an example of a photobleaching trace along with its increas-
ing noise level as more fluorophores become active.

Earlier counting methods used filters—such as the median filter 
or the Chung–Kennedy filter (Leake et al., 2006)—as well as binning 
and constructing pairwise distance distributions (Svoboda et  al., 
1993) and other techniques (Coffman and Wu, 2012) and were able 
to count ∼10 steps. With more recent step-finding algorithms 
(Kerssemakers et al., 2006; Kalafut and Visscher, 2008; Carter et al., 
2008), the number of detectable steps increases to ∼15–30 (Das 
et al., 2007; Engel et al., 2009; Coffman and Wu, 2012).

The latest approaches—relying on the Schwarz information crite-
rion (SIC; also sometimes called the Bayesian information criterion; 
Schwarz, 1978; Chen et al., 2014) and the Student’s two-sample t 
test (Chen et al., 2014)—encounter problems for >20 steps and SNR 
< 2. Although SIC and Student’s t-test algorithms improve how 
many steps may be detected, visual inspection, supplemented by 
filtering methods, is still often used (Engel et al., 2009).

One shortcoming of these previous methods is that they do not 
directly account for on-off blinking or stochastically varying noise. 
Here we present a Bayesian approach to counting that directly ad-
dresses the foregoing challenges. Conceptually, our method uses a 
likelihood function that is adapted to treat the physics of the noise 
properties expected in photobleaching and introduces a prior that 
corrects for systematic biases that would otherwise arise from sim-
ple likelihood maximization.

FIGURE 1:  Synthetic photobleaching time trace for 50 fluorophores, 
with μf /σf = 10 for the single fluorophore, illustrating how noise obscures 
steps when many fluorophores are active at the start of the trace. 
Although it is easy to resolve individual steps late in the trace when 
fluorophore numbers are low, for >10 or so fluorophores, the steps are 
strongly obscured by additive noise. Here μf = 2.0, σf = 0.2, μb = 20.0, 
and σb = 0 (quantities defined in the text). Both time and fluorescence 
intensity are in arbitrary units.
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state (number of active fluorophores) i and not the number of times 
j that state is visited, and so we can drop j for notational simplicity. 
The quantities μf, σf, μb, and σb (where the subscript f designates 
single-fluorophore values and the subscript b designates back-
ground) are relatively easy to determine experimentally from the 
end of the photobleaching time trace. For these reasons, we will 
assume that these quantities are known (or, equivalently, that priors 
over their values are sharply peaked). Finally, the prime on the first 
product in Eq. 1 denotes a restricted product, meaning that i does 
not necessarily run through all the states from 0 to I. This is because 
some states may not be visited at all (if two photobleaching events 
happen simultaneously), and thus Ji may be 0 for some i’s. For a 
concise explanation of all notation, see Table 1.

Our likelihood describes the probability that each data point in 
each ϕij interval is drawn from a normal distribution of mean μi and 
variance σi

2. However, we cannot simply maximize our likelihood, 
since, as is well known, likelihood maximization would overfit the 
data by favoring too many steps in the photobleaching time trace 
(Kalafut and Visscher, 2008). Typically, to prevent overfitting, model 
selection criteria—including the SIC (Schwarz, 1978; Cavanaugh 
and Neath, 1999), the Akaike information criterion (AIC; Akaike, 
1974), and others (Kadane and Lazar, 2004; reviewed most recently 
in Tavakoli et al., 2016)—compare different models on the basis of 
1) their fit to the data and 2) the number of parameters (i.e., the 
complexity) of the model (Claeskens and Hjort, 2008; Tavakoli et al., 
2016).

Our Bayesian approach uses model averaging—a method that 
also inspired the SIC—to penalize complex models. The idea be-
hind model averaging is simple: the likelihood function depends on 
a number of parameters (models), and, by averaging over these 
models, we account for models that are both good and bad fits to 
the data. Fundamentally, this process penalizes complexity by 
weighing into consideration models that are poor fits to the data 
(Schwarz, 1978; Tavakoli et al., 2016).

More concretely, we define a posterior probability for the model 
with parameters θ,

DD DDP P P( | ) ( | )θθ θθ θθ( )∝ � (2)

where P(θ ) is a prior, P(D|θ ) is a likelihood, and the proportionality 
arises because we dropped the normalization, P(D).

We then split the parameter vector θ into two groups, θ0 and θ ′, 
where θ0 are parameters that we integrate over, as their values are 
unknown and irrelevant. In other words, we take a weighted sum of 
the posterior over every possible value that these parameters could 
take:

DD DDP P P d( | ) | , ,0 0 0∫θθ θθ θθ θθ θθ θθ( ) ( )′ ∝ ′ ′
�

(3)

For discrete parameters, the integral is understood as a sum. The 
marginal posterior now only depends on the remaining parameters, 
θ ′, that we want to determine and thus not integrate over.

The marginal posterior obtained from Eq. 3 is our starting point. 
Our goal is to find the model that maximizes this marginal posterior, 
where the likelihood appearing in Eq. 3 is given by Eq. 1 and the 
prior, which we now describe in more detail, depends on the para
meters θ = (s, K, m, arr, μ, σ, γ ).

Here s are the event locations, K is the number of steps (i.e., 
discrete jumps in the data), m is the total number of events (defined 
as single-fluorophore intensity changes; from now on, when we refer 
to events, we exclusively mean these single-fluorophore intensity 
changes), arr is the number of possible arrangements of single-level 
events m (which we later ascribe to fluorescence intensity changes 

ordered in sequence by ascending acquisition time. Traces are typi-
cally obtained when fluorophore-tagged molecules of interest are 
illuminated at some time, say t = 0, and then monitored until all fluo-
rophores have photobleached. Photobleaching time traces present 
a model selection problem (Ludden et al., 1994; Cavanaugh and 
Neath, 1999; Stoica and Selen, 2004; Kalafut and Visscher, 2008; 
Pressé et al., 2013) for which a different number of steps and their 
locations within the trace, that is, the “model,” must be found.

Concretely, we use a Bayesian method to determine both the 
number of photobleaching steps, K, and their location in time, s = 
{s1, · · · , sK}. We call each possible {s, K} pair a model. Our method 
is implemented in a two-step algorithm intended to greatly reduce 
the computational requirements by eliminating from consideration a 
large number of unlikely models and thus limit the number of mod-
els whose relative merit (maximum marginal posterior) we must 
compare.

We benchmark our approach on synthetic data, demonstrating 
its applicability and limitations, and subsequently apply it to real 
experimental data. Our algorithm is implemented in a simple, freely 
available Python code on the corresponding author’s website.

A model selection criterion for photobleaching event 
counting
Any time there are i active fluorophores in a time trace, we say the 
trace is “visiting state i.” The total number of times state i is visited 
is Ji (which may be different from 1 if fluorophores blink). We label ϕij 
the jth interval—a collection of data points consecutive in time—
during which the trace visits state i; see Figure 2 for a schematic 
representation.

The likelihood of the data, D, given the model—whose para
meters we collectively refer to as θ— is

DDP
x

| 1
2

exp
2i j

J

l

n

ij

l ij

ij0 1 1
2

2

2

i ij

∏ ∏ ∏θθ
πσ

µ
σ

( )( ) = ′ −
−











ϕ( )

=

Ι

= =
�

(1)

Here I is the number of fluorophores initially present in the sys-
tem; the number of active fluorophores can never exceed I. n(ϕij) is 
the number of data points in the ϕij interval. xl is the signal intensity 
at data point l, D = {xl}, and i iterates over the states, j over the num-
ber of visits to a particular state, and l over the number of data 
points in an interval. The mean and SD of the fluorescence intensity 
at the ϕij interval are μij and σi, respectively. The mean of any interval 
belonging to the ith state should take the form μij = μi = iμf + μb, and 
its variance should take the form σij

2 = σi
2 = iσf

2 + σb
2. In other words, 

the mean and variance of a particular interval depend only on the 

FIGURE 2:  Schematic illustrating the variables used in Eq. 1. 
Idealized time trace with no noise. The number of active fluorophores, 
i, goes from 0 to 3, and so we have four states (0,1, 2, 3). The 
maximum number of fluorophores that can ever be active at the same 
time is three. Ji, the number of times the ith state is visited, ranges 
from 1 for i = 0 to 3 for i = 1; j runs from 1 to Ji for each i. There are 
eight ϕij intervals.
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In writing Eq. 4, we assumed that μ and 
σ are independent. We also dropped the 
hyperparameter, γ, dependence from all 
conditionals except P(m|K, γ ) because γ 
couples only m to K. The factor P(s|arr, K, 
m) in Eq. 4 refers to the locations of the 
steps given the arrangements, number of 
steps, and number of events. Because we 
have no prior expectation on how step lo-
cations are affected by arr, K, and m, we 
always assume a flat (constant) prior P(s|arr, 
K, m). The form of the remaining prior 
terms depends on the conditions of our 
problem, which we motivate in the next 
two subsections.

Illustrative example: a model selection 
criterion assuming no event blinking or 
overlap.  Here, as an illustrative example, 
we derive a simpler model selection crite-
rion using the steps highlighted earlier in 
the absence of blinking and overlap. 
Although this will not be useful in finding 
the model for a real photobleaching trace in 

of magnitude μ = μf) on K steps (Figure 3), μ and σ are the mean and 
SD, respectively, and γ is a hyperparameter discussed in the 
Appendix.

Taking all of the above into consideration, we write the prior as

FIGURE 3:  Two models can have the same number of steps and even have those steps occur 
at identical locations, and yet different m’s and arr’s may fit the data very differently. (A) m 
refers to the total number of single fluorophore intensity level changes. In both cases, K = 3 
(three steps), but on the left, these are made up of a single, a double, and again a single event 
for a total m = 4, whereas on the right, the three steps are made up of a triple, a double, and a 
single event, and so m = 6. (B) arr refers to the different ways in which m events can be 
arranged in K steps. In both cases, K = 4 and m = 7 but arr is different. On the left, the first 
three steps are double-event ones and the fourth is single, whereas on the right, we have in 
succession a triple, a double, and two single events. Note that neither m nor arr is location 
dependent.

Symbol Description

t Time

Δt Time interval between successive steps

s, s Step locations

K Number of steps

i Number of fluorophores active at a given time

Ji Number of intervals where i fluorophores are 
active

ϕij The jth interval where i fluorophores are active

ϕ Iterator over intervals

j Iterator over intervals belonging to the ith state

D Data (time-ordered vector of signal intensities)

θ, θ0, θ ′ Bayesian parameters

I Maximum number of fluorophores present in the 
trace

n, ni, nϕ, n(ϕij) Number of data points in an interval

nc Number of data points in a computational 
window

l Iterator over n

σij SD of the emission intensity in the ϕij interval

μij Mean of the emission intensity in the ϕij interval

σf SD of the single-fluorophore emission intensity

TABLE 1:  Notation and symbols.

Symbol Description

μf Mean of the single-fluorophore emission intensity

σb SD of the background emission intensity

μb Mean of the background emission intensity

xl Signal intensity at data point l

arr Individual event arrangements

m Number of events (single-level fluorescence 
intensity changes)

γ Hyperparameter constraining K to m

γ 0 Cutoff for γ

λ Poisson distribution parameter for event 
occurrences

d y Degeneracy of steps with the same event 
“occupancy”

N Total number of data points in a trace

pi Probability of a data interval having i active 
fluorophores

G Number of windows

α Minimum number of events in a window

β Maximum number of events in a window

imax, w Widths of fluorophore range to be examined

d Number of data points between consecutive steps
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Typically, if a fit to the data is bad, the likelihood function and, by 
extension, the marginal posterior are small. However, if we were to 
overestimate the number of active fluorophores at some point in the 
time trace, the expected variance would also grow (if we assume 
that both means and variances grow with i, as we did in Eq. 7). As 
uncertainty grows, poor fits to the data do not penalize the likeli-
hood function as heavily as if the SD were small.

Concretely, what this means is that if we introduce the possibility 
of overlapping events, then our marginal posterior, as shown in 
Eq. 7, will 1) tend to overestimate the number of active fluorophores 
and 2) be consistently biased toward maximizing event overlap.

To address these problems, we need to incorporate the appro-
priate combinatorial factors that will inform the prior on how im-
probable it is for events to overlap. For example, we should be able 
to quantify, given no data, what the a priori odds are that the only 
two steps in a time trace containing 100 data points, say, overlap.

The next section treats blinking and overlap and deals with this 
key issue.

A criterion that incorporates blinking and overlapping events.  
The following conditions hold when we have blinking and overlap-
ping events in a photobleaching time trace:

1.	 States are no longer visited sequentially. For example, it is 
possible to go from state i to state i − 1 and then, say, back to 
state i.

2.	 Some states may be visited more than once (when blinking 
occurs).

3.	 Some states may not be visited at all. For example, if overlapping 
photobleaching events force the system to go directly from having 
i + 1 to having i − 1 active fluorophores without ever visiting state i.

Under these conditions, our likelihood is given by Eq. 1. Our full 
prior is given in Eq. 4. We assume the same priors over μ and σ as-
sumed in the last subsection.

However, to correct for the bias we mentioned in the previous 
section on overlapping events, we introduce a combinatorial prior 
on P(arr|m, K):

P arr m K K

d m
m K

| , !

!

1

1
y

m K
y1∏

( ) =
−
−







=
−

�
(9)

where m − K is the maximum number of events that can overlap, 
and dy are the degeneracies of steps with y-level “occupancy.” Fur-
ther details are in the Appendix. Intuitively, this quantifies how un-
likely it is to have many steps with multiple overlapping events. In 
addition, we specify priors on P(K), P(m|K, γ), and P(γ) as follows:

P K e
K P m K e P! , | , , and constant
K

m K/λ γ γ( ) ( )( ) = = ∝
λ

γ
−

−

�
(10)

Here the prior over K is a Poisson distribution, which depends on 
the hyperparameter λ, the rate. In theory, our a priori assumption 
should have been that we have an inhomogeneous Poisson process 
with a higher rate expected at the start of the time trace (when many 
fluorophores are a priori expected to be active) and a lower rate 
expected at the end of time trace (when many fluorophores are a 
priori expected to have photobleached). Under these assumptions, 
we can estimate the precise form of λ and how it depends on an-
other hyperparameter (the number of a priori expected active fluo-
rophores at the start of the trace). In practice, in data analysis, an 
average—fixed value—for λ suffices.

which these complications are present, it serves a pedagogical pur-
pose by illustrating how we reach a marginal posterior starting from 
a likelihood and set of assumptions that are built into a prior. More 
explicitly, our assumptions for this subsection are as follows. 
1) Events do not overlap with each other (i.e., no two fluorophores 
photobleach at the same time, i.e., within the same data acquisition 
interval; Ulbrich and Isacoff, 2007). Simultaneous photobleaching is 
of particular concern for high fluorophore numbers and, as a conse-
quence of the stochasticity of photobleaching and the finite sam-
pling rate of instrumentation, cannot in practice be completely 
avoided. 2) Blinking (Annibale et  al., 2011), due to either triplet 
states or long-lived dark states (Ha and Tinnefeld, 2012) arising from 
fluorophore conformational changes or interactions with the envi-
ronment—where a fluorophore turns off reversibly and then reacti-
vates—does not arise. In other words, at t = 0, all fluorophores are in 
the active state and, subsequently, may only irreversibly photo-
bleach.

Because we have no blinking or overlapping events, the total 
number of events, m, in the trace is equal to the number of steps, K, 
and also equal to the total number of identical fluorophores, I, in an 
ROI, which is also the total number of states. The quantity arr has no 
meaning here and need not be considered (only one arrangement 
with one event per step is possible).

For this simple example, the likelihood of the model is
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Next, for our prior given by Eq. 4, because m = K and the quan-
tity arr has no meaning, we set the prior terms as follows: P(arr|m, K) 
and P(K) to constants; P(m|K, γ ) ∝ δ(m−K), and, thus, P(γ ) to a 
constant.

In our prior, however, we do assume that the photophysics of our 
problem properly informs μ and σ. That is, we assume that, in our 
prior, P(μ) = ΠI

i = 0 P(μi) = ΠI
i = 0 δ(μi − iμf −μb) and P(σ) = ΠI

i = 0 P(σi) = 
ΠI

i = 0 δ(σi
2 − iσf

2 − σb
2). We then insert this likelihood and prior into 

our expression for our marginal posterior, Eq. 3, and subsequently 
marginalize the resulting posterior over all quantities except those 
that we want to use to discriminate between models, namely {s, K}. 
The resulting marginal posterior is simply
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where s are the step locations, a subset of K (out of a total N) data 
points. Of course, the particular data points that are members of the 
step location set change between models to be compared. Taking 
the negative log and dropping all constant terms, that is, terms that 
do not depend on model parameters, we get
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Because the photophysics informs both our means and SDs, this 
expression differs from simple cases in which we integrate over all 
possible values of μ for every step and assume a single σ over all 
steps over which we also integrate, yielding

P K N N N N2 ln 2 ln ln ˆ ln 2j j..
2

k1
σ π( ) ( )− = + + + +

� (8)

where N is the number of data points in the trace and ˆ j j..
2

k1
σ  is de-

fined in Eq. 3 of the Appendix of Kalafut and Visscher (2008).
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events and further integrates over all values 
of μ and σ as was done in Eq. 8. In Figure 
4B, we show that the model maximizing the 
marginal posterior that accounts for the 
photophysics in μ and σ via the appropriate 
prior but otherwise ignores blinking or over-
lapping events, Eq. 7, has two problems: 
1) it overestimates the number of active 
fluorophores, and 2) it stacks events. Both 
problems arise for the reason we describe 
at the end of Illustrative example: a model 
selection criterion assuming no event blink-
ing or overlap. In Figure 4C, we add explicit 
priors over P(K) and P(arr|m, K), which im-
prove the model fit to the data primarily by 
reducing the number of events stacked. 
However, the number of active fluorophores 
is still overestimated without a prior on 
P(m|K, γ). Finally, in Figure 4D, we show that 
the model criterion given by Eq. 11 im-
proves the fit for these low-noise data.

Algorithm description
In practice, computing and comparing the 
marginal posterior, or equivalently Eq. 11, 
for all conceivable models is not computa-
tionally feasible. To reduce the computa-
tional cost, nested (also called greedy) ap-
proaches are used (Chen et  al., 2014), in 
which, for instance, a single trial step is 
placed at a point in time and a selection cri-

terion, such as the SIC or AIC, is calculated. If a single step provides 
a value for the criterion that is lower than the criterion with no step, 
then this step is retained, and the process is repeated (holding the 
first step fixed) to find the possible location of a second step. More 
steps are subsequently found in this way until any single additional 
step only increases the value of the criterion. Although this approxi-
mate treatment is relatively efficient, it still requires roughly O(NK) 
calculations, where N is the total number of data points and K, as 
before, is the total number of steps.

Instead of this classic nested approach, to improve computa-
tional efficiency and accuracy (defined later), we employ the follow-
ing three-step method.

Step 1: We find the mean and SD of the single fluorophore and 
background from the data, if not already known experimentally. In 
other words, assuming μf, σf, μb, and σb are a priori unknown, we 
determine these quantities by employing a version of a greedy al-
gorithm (Kalafut and Visscher, 2008) to locate the last steps in the 
trace—that is, where the noise level is lowest —that provide us with 
an estimate for μf, σf, μb, and σb.

Step 2: Eliminate unlikely models. We propose a principled 
method to eliminate a vast number of improbable models (e.g., 
such as the extreme example of having all fluorophores simultane-
ously photobleach), leaving our criterion, Eq. 11, to evaluate the 
relative merit of a comparatively smaller number of candidate mod-
els. To do so, we first subdivide our time trace into G windows of nc 
data points each. The first window is defined as the window at the 
very end of the time trace. Now, knowing μf, σf, μb, and σb from Step 
1, we have an estimate for how many fluorophores are active in the 
first window. As we begin moving in reverse time order—eventually 
toward the start of the trace (Gth window)—we may estimate how 
many fluorophores must be active in each window.

Next our prior over γ penalizes deviations of m away from K. 
Because the strength of the penalty γ is unknown, we integrate this 
hyperparameter starting from some minimal acceptable value γ 0 
to infinity. Further details are provided in the Appendix. As a final 
note, because we set λ to a fixed value that we do not integrate 
over in our prior over K, for notational simplicity, we do not intro-
duce a prior over λ.

Inserting our priors for μ and σ and Eqs. 9 and 10 into Eq. 4 
returns our full prior.

Next, inserting this full prior and the likelihood into Eq. 3 and 
following the appropriate marginalization over γ detailed in the 
Appendix and all integrations over δ-functions, we recover our mar-
ginal posterior:
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where we dropped all constants that do not depend on model vari-
ables and defined A m K m K e2 ( 1) - /K0= − + − − + γ .

Equation 11 is the criterion we use in model selection. As a sim-
ple sanity check, we note that Eq. 11 reduces to Eq. 7 when m = K 
with the exception of the single term –K ln λ, which arises out of the 
prior for P(K), which we had taken as constant in deriving Eq. 7.

An example illustrating the key role of the prior is shown in 
Figure 4. In Figure 4A, we first show a model that maximizes the 
marginal posterior but does not consider blinking or overlapping 

FIGURE 4:  Our method’s accuracy increases as more prior terms are specified explicitly. We 
used low-noise experimental data from the Peterman and Wuite groups to test the effects of 
our prior. (A) No blinking or overlapping events are considered, and we integrate over all 
unknown means and variance to obtain the marginal posterior. Although some steps are found 
accurately, others are not, and both the double-step and the reactivation events are predictably 
missed. (B) Here we use the marginal posterior given in Eq. 7, which, as expected, shows event 
stacking and overestimation of the number of active fluorophores for the reasons described in 
Illustrative example: a model selection criterion assuming no event blinking or overlap. (C) Here 
we add the explicit form of the priors for P(K) and P(arr|m, K). The overestimation of 
fluorophore numbers problem is resolved, although the algorithm still gets the event stacking 
wrong, causing a step to be missed. (D) Our full posterior, Eq. 11. Results are excellent 
compared with A–C.
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windows introduce error due to small number statistics and should 
be avoided.

Step 3: Precisely determine step location and numbers. We 
now use the information from Step 2 to determine the most likely 
event locations. Scanning in reverse the window segmented data, 
we compute the numerical value of Eq. 11 for all possible event 
locations within a window, knowing, from the previous step, that 
the most likely number of events occurring within the window is 
α − β. Assuming some error in our Step 2 estimate of α − β events, 
we compute the value for all possible events in the range [(α − β) 
− w, (α − β ) + w]. If the value of Eq. 11 at one of the limits of the 
search range (say, (α − β) + w ) proves to be the smallest, we recen-
ter our search on that value and calculate values for our criterion 
with ±w again (continuing the example, in [(α − β ), (α − β ) + 2w]). 
Comparing these values, we assign the one with the minimum 
value as the most probable local model. Like imax and nc, the 
range of events to be considered, w, is set by the user on the basis 
of computational efficiency. Benchmarking on synthetic data re-
veals that small w’s decrease accuracy and computational cost, 
whereas large ones do the reverse. Note that w and imax are the 
same concept, in that both designate the range of our search for 
the most likely number of active fluorophores, doing so in Steps 1 
and 2, respectively. However, we denote them differently because 
the much heavier computational demands of Step 3 necessitate 
that w be much smaller than imax. Simply put, Step 2 is so much 
simpler computationally that imax can easily be in the hundreds, 
whereas a w >10 or 20 becomes computationally prohibitive.

To summarize, after determining μf, σf, μb, and σb in Step 1, in 
Step 2, all windows are scanned in reverse order, and an estimate 
of the number of steps in each window is made. We then move to 
Step 3 and calculate the most likely model. A schematic of our 
algorithm appears in Figure 6. For a total number of G windows 
of size nc with α − β events per window, we must compute the 
criterion value a number of times that is roughly of the order 
Gnc(α − β ). If we set N = 100,000, I = 50, G = 1000, nc = 100, and 
α − β = 5, we get that a nested algorithm requires NI = 5 × 
106 calculations, whereas our method requires Gnc(α − β ) = 5 × 
105 calculations. In other words, our approach reduces computa-
tional requirements by an order of magnitude. In reality, because 
photobleaching is an exponential process, the vast majority of 
windows especially toward the end of the trace will have few or 
no events. Therefore Step 3 will either not need to be used or will 
have to discriminate between very few candidate models for 
those windows, so our approach is even faster than this upper 
bound. For typical photobleaching time traces with up to 103 
data points, our algorithm works in seconds. For data sets that 
have between 1000 and 10,000 data points our algorithm runs in 
seconds to a few minutes. For very large data sets, our algorithm 
works faster than other methods we have tested. For example, in 
a test of a very large data set that was specifically designed to be 
hard to fit, performed on an ordinary MacBook Pro 2.5 GHz lap-
top, the Tdetector2 algorithm, which is based on Student’s two-
sample t test as implemented in MATLAB by Chen et al. (2014), 
required ∼7 d to run the 5 × 104–data point data set with 50 steps; 
our method needed 17 h.

Applicability of our approach: theoretical and computational 
limitations
There are two major constraints to our method’s applicability:

1.	 We assume that each individual fluorophore is independent and 
has identical properties μf and σf that do not change in time. This 

To estimate the fluorophore number in each window, we note 
that any data point along a photobleaching time trace must ulti-
mately be sampled from a normal probability distribution, pi, of 
mean iμf + μb and variance iσf

2 + σb
2. For each sequence of nc data 

points, we can quantify the likelihood that all nc data points were 
sampled from pi. This is the likelihood that all points in that window 
were sampled during a time when i fluorophores were active, given 
the data in the window. The most likely number of fluorophores ac-
tive in each window is the specific value of i for which this likelihood 
is maximum.

We assume that in the first window (which is the last timewise, 
since we are moving through the data in reverse), all data points are 
sampled from p0. We then move to the next window, where we com-
pare the values of the likelihoods for a certain range of i values based 
on the number of fluorophores that were active in the previous win-
dow we examined. For example, if in the previous window the most 
likely number of active fluorophores was k (so that the data were 
drawn from pk), we search the distributions {pk−imax, pk+1−imax,…, 
pk−1+imax, pk+imax}, where imax is set to some arbitrary but reasonable 
value depending on k. If k − imax < 0, we stop searching at p0 since 
there can never be a negative number of active fluorophores.

Any time two neighboring windows are found to have different 
numbers of most likely active fluorophores, say pα and pβ , where 
we take α > β, then α − β events have probably occurred. Moving 
in reverse through the trace in this manner, we estimate the most 
likely number of events that occurred in any window (Figure 5). 
Note that dividing up the data set into small windows increases 
both accuracy and computational time. However, very small 

FIGURE 5:  How Step 2 of our algorithm works: The synthetic data 
(blue) are divided into G = 6 windows (black squares). For each 
window, we calculate i likelihoods. Each of these is the likelihood that 
all data points within the window were taken when i fluorophores 
were active. Once we have all i likelihoods, we compare them and 
assign the window the number of fluorophores for which the 
likelihood is maximized. In this example, Step 2 has determined that 
the data points in windows 0 and 1 most likely belong to the p0 
distribution (no fluorophores active, only background), the data points 
in windows 2 and 3 most likely belong to the p1 distribution (one 
fluorophore active), and the data points in windows 4 and 5 most 
likely belong to the p2 and p4 distributions, respectively, which means 
that two fluorophores are active in window 4 and four in 5. When Step 
3 of our algorithm treats this trace, it will use the results from Step 2 
to focus on reasonable preselected models. For example, it will focus 
primarily on models that have two to four active fluorophores in 
windows 4 and 5.
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yields correct results. Still, if both aSNR 
and number of data points between 
steps decrease, confidence in our algo-
rithm’s results should decrease as well. 
For most systems, the number of data 
points acquired between possible steps 
is a matter of experimental design. 
Whereas fluorophore photobleaching is a 
random process and events with separa-
tion <50 data points are bound to occur, 
by tuning, for instance, laser intensity, an 
experiment can be designed to ensure 
that the majority of events have a separa-
tion of >50 data points on average.

RESULTS
Benchmarking on synthetic data
To test our algorithm’s performance, we 
first test our method on synthetic data sets 
in which the actual step locations are 
known. We start by discussing qualitative 
comparisons and subsequently define met-
rics that will allow us to make quantitative 
comparisons.

All data sets were created using the Gil-
lespie algorithm (Gillespie, 1977) by starting 
with N fluorophores each with prespecified 
kinetics (photobleaching and blinking-on/

off rates). We then created a trace, which we call the noiseless or 
denoised time trace, by plotting the total number of active fluoro-
phores multiplied by μf and then added noise.

Once we generated these data, we ask whether we can deter-
mine the number of steps, K, and their locations, s. We tested vari-
ous choices of hyperparameters and user-input parameters (n, imax, 
w, etc., as defined in our algorithm) for the best results as quantified 
by the metrics defined later. To measure our algorithm’s perfor-
mance and compare it to alternate tools, we tested various methods 
(including our own) on our synthetic data sets.

The performance metrics we use are based on the number and 
location of events—which, we recall, are single-fluorophore intensity 
level changes—because a step may be made up of more than one 
single event when considering overlapping events. Our metrics are 
defined as follows:

1.	 Precision (PR): the ratio of the number of true events found (exact 
or displaced; see later discussion) to the total number of events 
found.

2.	 Sensitivity (SE): the ratio of the number of true events found (ex-
act or displaced) to the total number of true events.

3.	 Offset (OF): the average distance (in terms of data points) be-
tween the location of a true event and the location of the found 
event. This is a metric that can capture the cases in which an 
event is identified close to, but not quite on, its true location, in 
which case we call it a displaced true event.

We identify an event as a displaced true event only if the event 
found is within a distance d (in terms of data points) from the true 
event. We set d to be the minimum of 50 data points or 0.1%N, 
where N is the total number of data points in an entire trace. If 
more than one event is found within d of the true event, we take 
the closest one as the displaced event. If both are equally distant 

assumes that the fluorophore maturation process is complete for 
all fluorophores; that, following a blinking event, the fluorophore 
fluoresces just as it did earlier; that all fluorophores are imaged 
on nearby z-planes; and that the orientation of fluorophores that 
are not freely rotating does not affect their fluorescence proper-
ties (Backlund et al., 2014). For example, for a large complex, 
one can imagine that the observed fluorescence intensity of a 
particular fluorophore within that complex might depend on the 
fluorophore’s orientation and location within the complex, so 
that not all photobleaching events give rise to an equal μf 
(Backlund et al., 2014), or, if a fluorophore is not freely rotating, 
the number of detected photons emitted by the fluorophore 
might depend on the angle between their orientation and the 
detector, which could change over time. We might deal with this 
challenge by ascribing a prior over the μf’s informed by the phys-
ics of the problem and integrating over a range of acceptable μf’s 
in our posterior.

2.	 Our method is only as good as the data. With insufficient data, 
step locations can no longer be reliably determined. Thus we 
assume that the data resolution is high enough that even at the 
start of the trace, the number of data points between fluores-
cence level changes is at least 50. This number of data points 
between steps is sufficient for adjusted SNR (aSNR), where aSNR 
= 2(μϕ +1 − μϕ)/(σϕ +1 + σϕ), and ϕ is an interval (for the full defini-
tion of aSNR, see Results) down to 0.25. If the aSNR is larger, we 
need fewer data points between steps to be accurate. On the 
contrary, if the aSNR is smaller, we need larger numbers of data 
points between steps for our algorithm to accurately locate them. 
Having few data points between events runs the risk of introduc-
ing small-number statistics errors in our method, primarily in the 
form of having close-by real steps confused for double steps. 
However, it is often the case that, even when the aSNR is low 
(<0.25) and the data points between steps <50, our algorithm 

FIGURE 6:  The three steps of our algorithm can be broken down into a step-by-step chart. In 
this schematic, nc is the window size, imax is the maximum number of fluorophores 
simultaneously considered in a window, w is the maximum number of single-level fluorescence 
change events the code will consider (essentially setting m = w, but only within one window), 
and γ 0 is a hyperparameter cutoff. These four quantities are the user-defined parameters that 
our approach requires. Note that since the trace has been reversed, the “first” window and the 
“first” two steps of the algorithm discussed in Kalafut and Visscher (2008) are timewise the last 
window and the latest two steps in the trace.
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Analysis of the experimental data sets
We present the analysis on five data sets:

1.	 Data set I (published data): We used green fluorescent protein 
(GFP)–tagged mitotic centromere–associated kinase (MCAK) 
protein provided by the Walczak group (Ems-McClung et  al., 
2013). MCAK proteins—members of the kinesin-13 protein 
family—are involved in spindle assembly during mitosis, chromo-
some segregation, and error correction (Walczak et  al., 2013). 
MCAK is also unique among kinesins because it can bind to mi-
crotubule ends directly from solution and rapidly diffuse along 
the microtubule; once attached to the microtubule’s end, it 
causes a conformational change that results in microtubule de-
polymerization and its own detachment. It is known (Walczak 
et al., 2013) that when Aurora B kinase phosphorylates MCAK, 
the latter’s depolymerization activity is inhibited. To discover the 
mechanism of inhibition, MCAK proteins were tagged with GFP, 
and photobleaching event counting was used to see how quickly 
they detached from a microtubule.

2.	 Data set II (published data): We used Alexa Fluor 55–tagged 
RAD51 proteins provided by the Peterman and Wuite groups 
(van Mameren et al., 2009). RAD51 is a recombinase protein. It 
catalyzes strand exchange between homologous DNA segments 
(Sung et al., 2003), a key meiotic event that assures genetic di-
versity (van Mameren et al., 2009). RAD51 forms a helical fila-
ment around single-stranded DNA; this filament then locates the 
homologous double-stranded DNA, invades it, and catalyzes the 
strand exchange needed to create a joint molecule, following 
which the RAD51 filament disassembles to enable other proteins 
to conclude the process. The disassembly from the filament re-
quires hydrolysis of ATP bound at the interface between adja-
cent RAD51 monomers. To determine the precise disassembly 
mechanism, RAD51 monomers were labeled with Alexa Fluor 
555 and photobleaching time traces taken to determine the 
number of monomers per filament and their detachment rate 
from the filament.

3.	 Data sets III–V (new data): Here we used our method on data 
sets acquired during experiments intended to investigate how 
drug delivery systems (DDS) work at the cellular level. A challenge 
in the optimization of DDS is the ability to accurately quantify 

from the true event, we conservatively accept neither as a dis-
placed event and consider the true event as missed. If a step 
found is not of size (number of single-level events) equal to the 
corresponding true step, we only consider correct the number of 
events up to overlap size. For example, if there is a triple step in 
the trace but we only find a double step, we consider two events 
found and one event missed. Similarly, if there is, say, a reactiva-
tion event and we find a double step, we consider three events 
missed.

4.	 Adjusted signal-to-noise ratio (aSNR): defined as 2(μϕ + 1 − μϕ)/ 
(σϕ + 1 + σϕ), where μϕ and σϕ are the mean and SD of the ϕ th 
interval (recall that an interval is the stretch of data points be-
tween two identified steps). This is a step-specific measure of the 
noise that, contrary to the simpler μf/σf metric, captures the in-
creasing difficulty of identifying a step when there are many ac-
tive fluorophores (i.e., at the start of a trace). aSNR is given as a 
range from its value at the trace end to its value at the trace start.

Under these metrics, optimal performance implies unity preci-
sion and sensitivity (all true events found and no false events found) 
and zero offset (all events found at their precise locations), whereas 
the range of aSNR is a measure of how hard a data set is to fit. These 
metrics can be used to compare algorithm performance on syn-
thetic data sets but cannot be used on real experimental data, 
where the true steps are unknown.

Figure 7A shows the example of a time trace with many fluoro-
phores initially active (the black line is the theoretical noiseless 
trace). Figure 7B shows the data from Figure 7A with the results from 
Step 2 of our algorithm offset in red and the results of our full algo-
rithm offset in blue. Both blue and red show a spurious blinking 
event at the start of the trace, where the noise level is highest. Oth-
erwise, blue matches the ground truth (black) almost exactly, 
whereas red is only an approximation. This shows how Step 2 of our 
algorithm successfully approximates the real denoised model, thus 
greatly reducing the number of alternate models our Step 3 needs 
to consider. The net effect of producing a good approximation such 
as this is that computational resources and time are substantially 
reduced. In Figure 7C, we overlap the ground truth (black) with the 
results (green) from our full algorithm to further illustrate how pre-
cise our results are.

FIGURE 7:  Example of our method applied to a data set with high numbers of fluorophores and correspondingly high 
noise levels. (A) Large numbers of fluorophores produce a very noisy trace (synthetic data). This is an example of a noisy 
signal (blue) around the denoised trace (black) for synthetic data. We show the first 104 data points from a 2 × 105 data 
point trace in which 50 fluorophores photobleached. For this data set, μf = 2.0, σf = 0.2, μb = 20.0, and σb = 0.0. (B) Step 
2 provides a rough estimate of the ground truth trace that Step 3 refines. We show the same denoised levels and noisy 
data as in A plus the estimate from Step 2 (red; after eliminating unlikely models) and Step 3 (blue). The red and blue 
curves have been displaced by −20 and +20 intensity points, respectively, to facilitate comparison. (C) The same 
denoised levels (black) and noisy data (blue) from A, where we superimposed the results of our approach after Step 3 
(green), Eq. 11, on the denoised data levels to emphasize differences. We find all steps with (in some cases) minor 
offsets only, so our sensitivity is optimal (SE = 1), and offset is very good (OF = 0.84). At very high fluorophore numbers, 
our algorithm detects one spurious blinking event, but that is the only error, and so that precision is near perfect 
(PR = 0.99). aSNR = 10–0.2.
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Data set analysis results
Having benchmarked our method on synthetic data, we now sum-
marize our method’s analysis of all experimental data sets in Figures 
8–12. For data set I (Figure 8), our algorithm identifies four fluores-
cence levels (including the background-only level). For data set II 
(Figure 9), our method finds two steps and determines that the very 
first data points in the trace arise from noise and not a third fluoro-
phore. Considering that both traces have high SNR (∼2 and ∼4, re-
spectively), we can verify our algorithm’s findings by eye.

For data sets III in Figure 10 and IV in Figure 11, our method’s 
results respectively conflict and agree with the results of the original 
analysis method, which was a combination of noise filtering and es-
timation of fluorescence levels identifiable by eye (a fuller descrip-
tion of the original analysis method can be found in later subsec-
tions on Trace extraction and Data analysis). Whereas this original 
analysis method concluded that there are three steps in Figure 10, 
our method finds seven steps because it identified a blinking event. 
On the contrary, for Figure 11, our and the original analysis method 
agree on four steps. We note that errors due to small-number statis-
tics when processing data set IV are more likely than when process-
ing data set III. We therefore have more confidence in our analysis 
of data set III, despite the fact that our method’s results disagree 
with the original data analysis method. For data set V in Figure 12, 
our method finds >30 steps, including multiple reactivation and 
overlapping events. The latter are particularly prevalent early in the 
trace, which is expected if there are many fluorophores active to 
begin with and the data acquisition rate is relatively low. This is be-
cause photobleaching events are more frequent early in a trace, and 
if more than one event occurs between successive measurements, 
they will register as an overlapping event. It is worth noting that the 
original filtering-and-eye analysis method found this data set intrac-
table and could not resolve any steps.

Comparison to other methods
Our method treats blinking, stochastic noise variations, and overlap-
ping events that may arise from interacting fluorophores or slower 

time acquisition. Our method can be gener-
alized to treat a range of μf’s and σf’s, al-
though in this work, we assume these are 
fixed to some determinable value.

In this section, we compare our approach 
to existing methods.

The first approach is based on hidden 
Markov models (HMMs; Messina et  al., 
2006). These methods are generally very re-
liable and have been used to great effect in 
other problems; however, for photobleach-
ing event counting, HMMs are hampered 
because their computational cost quickly 
becomes prohibitive unless one limits the 
number of fluorescence intensity states that 
can be considered. For example, in Messina 
et al. (2006), working on multichromophore 
photobleaching, to make the model com-
putationally tractable, it was necessary to 
postulate that only single-level jumps occur, 
thus eliminating the possibility to treat over-
lapping events; even so, the method is lim-
ited to counting 30–40 fluorophores.

Another common approach relies on us-
ing some test or criterion to determine the 
number and location of photobleaching 

when, where, and how much drug release occurs inside the tar-
geted cell. Recently ensemble fluorescence microscopy–based 
techniques have begun to be used to simultaneously answer 
these questions in a semiquantitative manner. Although these ex-
periments sufficiently guide scientists to determine when large 
release events occur from endosomal compartments, they are in-
sufficient to analyze slow-release events, low DDS concentrations, 
and events that occur outside of the endocytotic transport path-
way (e.g., directly into the cytoplasm). By contrast, photobleach-
ing event counting holds the promise to quantify release of DDS 
cargo more accurately (Pitchiaya et al., 2012, 2013, 2014; Shankar 
et al., 2016).

FIGURE 8:  Our analysis of a trace obtained on GFP-tagged MCAK 
protein. These data are expected to show a large reactivation event 
and two or three steps, as the GFP-tagged proteins that have 
attached to a microtubule are first activated and then detach from the 
microtubule. Our method identifies the initial triple activation (a large 
initial activation event is expected when the fluorophores are first 
illuminated) and then finds two more steps (one double and one 
single). Given the small number of fluorophores and the low noise 
level, our findings are consistent with steps identifiable by eye.

FIGURE 9:  Our analysis of a trace obtained on Alexa Fluor 555–tagged RAD51 proteins. In 
keeping with our expectation for how noise should change as more fluorophores are active, we 
identify two steps and determine that the small rise at the very start of the trace arises from 
noise, contrary to the analysis in van Mameren et al. (2009). At low noise, our findings are again 
consistent with steps identifiable by eye.
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method performs better than the fixed-noise model because it 
avoids the excessive overfitting exhibited by the fixed-noise model 
at the high-noise, high-fluorophore start of the trace. We also out-
perform the Tdetector2 algorithm because 1) it does not explicitly 
consider blinking and overlapping events, and 2) it overestimates 
the number of active fluorophores, a problem that we also encoun-
tered but resolved through our prior, which is discussed in more 
detail in the Appendix. We also note that the data set we used to 
test our algorithm against the Tdetector2 algorithm purposefully 
violates our desideratum of minimally having 50 data points be-
tween successive steps. Nevertheless, our algorithm still outper-
forms the alternatives; see legends to Figures 13 and 14 for details. 
As a final note, we stress that our algorithm does not involve 
smoothing or filtering, which removes information on fast–time 
scale kinetics.

Finally, there are many miscellaneous methods, from simple ones 
such as measuring the fluorescence “step” size from the late trace 
where steps can be detected by eye and using it to determine the 
number of fluorophores initially active, to more elaborate ones, such 
as using a Γ-distribution and dividing starting intensity by the result 
(Coffman and Wu, 2012), to using a binomial distribution with many 
traces to determine the most probable maximum fluorophore num-
ber (Das et al., 2007), to using the propagation of information with 
feedback algorithm (McGuire et  al., 2012). Such methods have 
faced problems when dealing with a large number (20–30) of fluoro-
phores and low SNR.

A recent method, spot number intensity correlation (SONIC; 
Liesche et al., 2015), is an innovative method that determines the 
total number of fluorophore-tagged subunits based on a statistical 
analysis of measurements of the time to total bleaching of all fluoro-
phores in a complex. Because complexes with more fluorophore-
tagged subunits take longer to decay to background fluorescence, 
the statistical analysis can yield an estimate for the total fluorophore 
number without determining exact step locations. SONIC seems to 
be very accurate when determining the number of fluorophores, but 
it has a major drawback, in that it cannot locate photobleaching 
steps in time and therefore cannot address problems for which ki-
netic measurements are needed, such as when MCAK proteins 
move in and out of the spindle assembly during mitosis.

steps. Such methods include the KV algorithm (Kalafut and Visscher, 
2008), which assumes fixed noise and is captured by Eq. 8 and Stu-
dent’s two-sample t test (Chen et al., 2014).

Chen et al. (2014) tested four different algorithms—two based 
on the SIC (with constant and variable variance) and two based on 
the two-sample t-tests—and concluded that the second of the two-
sample t-test–based algorithms (called Tdetector2) was the best for 
photobleaching event counting. We compared our method to both 
the fixed-noise model, Eq. 8, and the Tdetector2 algorithm (Figures 
13 and 14). We tabulate the comparison results in Table 2. Our 

FIGURE 10:  Our analysis of a trace obtained from HeLa cells 
transfected with Alexa Fluor 647–tagged microRNA-7. Our method 
locates seven steps in this data set, including two steps ascribed to 
blinking-on/off events. By contrast, the original analysis method found 
only three steps. The difference may be due to the fact that the 
original analysis method used filtering and averaging, which smooths 
out features of short duration, such as blinking.

FIGURE 11:  Our analysis of a trace obtained from HeLa cells 
transfected with Alexa Fluor 647–tagged microRNA-7 with drift. Our 
method marks four steps in this data set, in agreement with the 
original analysis method, despite the fact that early in the data set, 
the intervals between steps have <20 data points, making our 
method susceptible to error due to small-number statistics. Also note 
that this trace exhibits a slow, gradual decline in fluorescence that we 
believe is due to background autofluorescent endogenous material 
(Monici, 2005) colocalized with our fluorescent microRNA. These 
background particles typically photobleach slowly and show very 
small step sizes, leading to the visualization of a slow, steady decrease 
in fluorescent signal and making step detection difficult by eye. Our 
algorithm, which relies on specific anticipated noise changes for 
photobleaching event, does not misinterpret drift as photobleaching 
events, as can be seen toward the end of the time trace. In principle, 
however, in order to become more robust to drift, our likelihood 
function would need to incorporate those effects.

FIGURE 12:  Long time trace also obtained from HeLa cells 
transfected with Alexa Fluor 647–tagged microRNA-7. Our method 
marks ∼30 steps in this data set. The original analysis method found 
this data set intractable even after filtering. Our method finds not 
only many steps but also multiple blinking and overlapping events. 
Photobleaching events that are very close in time register as 
overlapping events if the data acquisition rate is longer than the 
interval between successive photobleachings.
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data sets involving 50+ fluorophores, (Figure 7), as suggested by 
our analysis of data set IV provided in Figure 12. This should help 
motivate future, more challenging experiments in which the number 
of fluorophores is much higher and their photophysics may be more 
complex.

MATERIALS AND METHODS
Here we describe the experiments that produced the unpublished 
data sets that we tested with our method.

Preparation of fluorescent microRNA duplexes
MicroRNA-7 (miR-7) guide and passenger oligonucleotides were 
synthesized with a 5′ phosphate and, in the case of the labeled 
guide strand, a 3′ NHS-ester–linked Alexa Fluor 647 (Integrated 
DNA Technologies, Coralville, IA). Guide and passenger strands 
were HPLC purified by Integrated DNA Technologies, and their 
size and purity were verified by denaturing, 8 M urea, 20% PAGE. 
For the guide strand, 90% of the RNA was found to be singly la-
beled, as determined by quantifying the molar ratio of fluoro-
phore to RNA through ultraviolet–visible absorbance measure-
ments. Guide and passenger strands were heat annealed at a 
1:1.5 ratio in 1× phosphate-buffered saline (PBS; 70011; Life 
Technologies, Delhi, India) to a final concentration of 10 μM. The 
extent of duplex formation was assessed using an electropho-
retic mobility shift assay on a nondenaturing 20% polyacrylamide 
gel. The miR-7 passenger and guide strand sequences were as 
follows:

miR-7 guide: 5′-p-UGGAAGACUAGUGAUUUUGUUGU-3′,

miR-7 passenger: 5′-p-CAACAAAUCACAGUCUGCCAUA-3′.

Cell culture and transfection
HeLa cells (CCL–2; American Type Culture Collection, Manassas, 
VA) were grown in an incubator and held at 37°C in an atmo-
sphere with 5% CO2 and 95% relative humidity. Cells were main-
tained in DMEM (11995; GIBCO, Langley, OK), supplemented 
with 10% (vol/vol) fetal bovine serum and 100 U/ml penicillin–
streptomycin (15140122; ThermoFisher Scientific, Waltham, MA). 
On reaching ∼80% confluency, cells were split and seeded onto 
DeltaT (Bioptechs, Butler, PA) dishes to a density of 1 × 105 cells/
dish. After 24 h, each dish of cells had half of its medium removed 
and was supplemented with 500 μl of transfection mixture (Lipo-
fectamine 2000 [11668019; Invitrogen, Carlsbad, CA] and 40 
pmol of miR-7 duplex in OptiMEM [31985070; Invitrogen]). To 
prevent overloading the cell with excessive fluorescently labeled 
miR-7, only 1% of the total duplexed guide strand contained 
Alexa Fluor 647. After a 4-h incubation period, the transfection 
mixture was replaced with fresh medium. At 6 h after transfection, 
the cells were washed thrice with 1× PBS, followed by a 20-min 
incubation with a 4% (wt/vol) paraformaldehyde and 1× PBS mix-
ture for fixation. The cells were then washed thrice with 1× PBS, 
immersed in oxygen scavenger system (OSS; 5 mM protocate-
chuic acid, protocatechuate-3,4-dioxygenase, and 2 mM Trolox 
[6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid]), cov-
ered, and sealed using Valap sealant.

Single-molecule imaging
Microscopy imaging was conducted as previously described 
(Pitchiaya et al., 2012, 2014, 2013; Shankar et al., 2016), using a 
home-built IX-81 Olympus microscope with a 60×, 1.49 numerical 
aperture oil immersion objective (Olympus, Lombard, IL), 2× mag-
nification wheel, P–545.3C7 capacitive piezoelectric xyz-stage 

DISCUSSION
Superresolution single-molecule microscopy methods are poised to 
provide information on protein complex stoichiometry with high 
spatial resolution (Lee et al., 2012; Rollins et al., 2015). Spatial reso-
lution in itself is important because it may distinguish, for instance, 
between true colocalization of protein species and random spatial 
patterning below the diffraction limit (Xia et al., 2013).

Despite its advantages, counting from superresolution data may 
become computationally expensive (Rollins et  al., 2015) except 
when realized via very sparse activations—but in that case, the ex-
periments are difficult—and may be complicated by photophysical 
artifacts such as incomplete maturation of the fluorophore (Durisic 
et al., 2014).

Although photobleaching event counting does not provide sub-
diffraction-limited information, it is computationally inexpensive 
and, for this reason, more complicated effects (such as blinking) can 
more feasibly be incorporated into the analysis of larger data sets. 
Here we argue that the key to successfully analyzing large 
photobleach data sets is to use the expected physics of the fluoro-
phores to inform the step-finding process. This strategy reduces 
the number of errors arising from stochastically varying noise, blink-
ing, and event overlap that arise in the methods to which we have 
compared ours.

For simple cases with few (<20) fluorophores or high aSNR (>1), 
our method does better than or just as well as coarser algorithms 
that ignore variance changes or blinking and overlap. However, our 
method does remarkably better on more challenging synthetic data 
sets and, presumably, would perform equally well in experimental 

FIGURE 13:  Our method greatly improves on the results of methods 
that treat noise as fixed. To compare the performance of Eq. 8 to 
Eq. 11, we use a 20,000-data point set of just 10 fluorophores (μf = 2.0 
and σf = 0.2) photobleaching to background with aSNR = 10.0–1.0. We 
show the theoretical signal (thick black line) around which we added 
noise (light blue), our estimate (yellow line), and the result of Eq. 8 (red 
line). At the end of the trace, both methods do very well. However, at 
the start of the trace, where cumulative noise is highest, our method 
has only minor offset (OF = 2.4), whereas a fixed-noise model grossly 
overfits, finding >100 spurious steps. This is expected because the 
higher noise at the start of the trace is now interpreted as signal by 
algorithms that assume that noise is fixed. Note that both methods 
find all true steps (SE = 1 for both), but the overfit by the fixed-noise 
model leads to great disparity for precision (PR = 1 for our approach; 
PR ≈ 0.125 for Eq. 8). Inset, detail of the trace’s first 1000 data points, 
where the bulk of overfitting by the fixed-noise model occurs.
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Trace extraction
Original trace analysis (done and then com-
pared with the method described here) 
was performed using a custom-written Lab-
View (National Instruments, Austin, TX) 
software code similar to previously de-
scribed procedures (Pitchiaya et al., 2012, 
2013). In short, the LabView code uses 
noise-filtering and photon-counting histo-
gram algorithms to identify particles of in-
terest and removes nonuniform back-
ground from all selected traces. The data 
were filtered further by a nonlinear Chung–
Kennedy noise filter to preserve fast and 
sudden signal transitions while averaging 
out random noise. The filtered data were 
then assessed by eye, with each sudden 
decrease in signal classified as a photo-
bleaching event. For each trace, the num-
ber of photobleaching events corresponds 
to the total fluorescent miR-7 molecules 
within a focus since >90% of dye molecules 
are found to be fluorescent (Pitchiaya et al., 
2012, 2013).

Data analysis: fixed-cell photobleaching 
analysis of transfected fluorescent 
miR-7 duplex
To test the photobleaching event count-
ing method described here in a biological 
context, we conducted a single-molecule 
photobleaching analysis to test the oligo-
merization state of transfected fluores-
cent miR-7 duplex in fixed HeLa cells. Six 
hours after transfection, our cells were 
fixed in a 4% paraformaldehyde solution, 
immersed in OSS, and illuminated using 
HILO fluorescence microscopy. Videos 
of single cells were acquired until all cel-
lular fluorescent particles were photo-
bleached into a permanent dark state. 
The original analysis was performed as 

described; via our custom LabView software, fluorescent parti-
cles were identified and background subtracted. Then noise was 
filtered to help identify by eye intensity transitions relevant to 
the photobleaching process. The results of this original analysis 
method were then compared with the results we acquired by 
first using the Lab View code just to select areas of interest and 
then processing the traces with our full Bayesian code.

Appendix: explicit form of the priors over m, K, and arr 
and the prior we use to constrain m to K
Here we derive the explicit terms that go into the prior that informed 
our marginal posterior, Eq. 11, by detailing the form of the terms 
given in Eq. 4: P(arr|m, K), P(K), P(γ), and P(m|K, γ).

Explicit form of P(arr|m, K) and P(K): combinations  
with repetition
We start with two of the terms in Eq. 4: P(arr|m, K) and P(K). When 
determining how m events are distributed in a set number of K 
steps, we have, from the number of combinations of m with repeti-
tion on K sites, the following total number of arrangements:

(Physik Instrumente, Karlsruhe, Germany), iXon 897 (Andor, Belfast, 
United Kingdom) electron-multiplying charge-coupled device cam-
era, and a Cell-TIRF module (Olympus). Cells were illuminated 
using solid-state lasers with wavelengths of 405 nm (0.8 mW at the 
objective) and 640 nm (8 mW at the objective). Highly inclined lami-
nar optical sheet (HILO) microscopy was used to achieve sufficient 
illumination depth while minimizing background. A quadband 
dichroic (Chroma) 405/488/532/647 was used to detect miR-7 fluo-
rescent particles and cell boundaries. All videos were acquired at a 
100-ms camera exposure time for 400 or 600 frames.

FIGURE 14:  Our algorithm offers an improvement over a recent Tdetector2 algorithm (Chen 
et al., 2014). In this 10,000–data point data set, 50 fluorophores photobleach to background 
with μf = 2.0, σf = 0.2, μb = 20.0, and σb = 0.0001. As before, we show the theoretical signal 
(thick black line) around which we added noise (light blue), the results of the Tdetector2 
algorithm (red), and results of our approach (dark blue). The dark blue and red curves are 
displaced by ±15 fluorescence units, respectively, to facilitate comparison. Both algorithms do 
very well late in the trace, when noise is relatively low; however, as noise increases, both 
encounter problems. In particular, both algorithms underfit. For our method, such underfitting is 
expected due to small-number statistics (see later discussion). However, the Tdetector2 
algorithm performs considerably worse. Inset, detail of the first 1000 data points of the trace. 
Underfitting for both algorithms is obvious, as is the fact that the Tdetector2 algorithm 
performs significantly worse than ours. We have aSNR = 10–0.1, PRB = 0.92, PRT = 0.81, SEB = 
0.34, SET = 0.31, OFB = 22.0, and OFT = 39.1, where the subscripts B and T denote our Bayesian 
method and the Tdetector2 algorithm results, respectively. Note that this particular synthetic 
data set was purposefully constructed to be “hard” for our algorithm to process: there are 
numerous cases in which neighboring fluorescence change events are separated by <50 data 
points. For aSNR ≤ 0.25, 50 points is the minimum number of data points between steps that 
permits our algorithm to perform relatively reliably. If the number of data points between steps 
is smaller, small-number statistics introduces error into our algorithm.

Parameter
Constant noise 

method Tdetector2 Our method

Precision 0.1 0.73 0.95

Sensitivity 1 0.47 0.82

Offset 1.2 45.6 13.7

TABLE 2:  Comparison of photobleaching event counting algorithms.
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where we set P(γ ), P(s|arr, K, m), and, implicitly, P(λ) to constants that 
we dropped.

The full marginal posterior
We now insert the full prior from Eq. 19 and the likelihood from 
Eq. 1 into the formula for the posterior from Eq. 3 and integrate over 
all μ’s and σ’s. Rather than maximizing the resulting marginal poste-
rior that we obtain from this procedure, we can minimize its negative 
logarithm (which, for the sake of comparison to typical information 
criteria, we multiply by a factor of 2). Up to constant factors, which 
are irrelevant in model comparison, we obtain
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where A m K m K e2 ( 1) .K/0= − + − − + γ−

This equation appears as Eq. 11 in the text.
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where dy is the number of steps with single-level event “occupancy” 
y, and m − K is the maximum possible number of overlapping 
events. The normalized probability of a given arrangement is then
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Next, to set a prior on the number of K within the time trace, we 
assume that, in the absence of blinking and overlap, the number of 
events is Poisson distributed for the reasons described in the text:
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Combining Eqs. 14 and 15, we obtain the prior over the number 
of steps K and the arrangements arr that arise for a given K and a 
total number of events m:
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Recall that the likelihood has two problems: 1) it overestimates 
the number of active fluorophores and 2) it stacks events. It does so 
for the reasons spelled out in Illustrative example: a model selection 
criterion assuming no event blinking or overlap. The foregoing prior 
fixes problem 1. The next subsection fixes problem 2.

Priors over P(m|K, γ) and P(γ)
To constrain m close to K, which addresses problem 2 of the last 
subsection, we introduce the hyperparameter γ and write P(m, γ |K) 
= P(m|K, γ )P(γ ). We assign to P(m|K, γ ) an exponential form:
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where we use a proportionality because we dropped the normaliza-
tion obtained by summing the exponential of Eq. 17 over m from K 
to ∞ (recall that there can be no fewer events, m, than there are 
states, K). Because we are unsure about how strongly we want to 
enforce this prior assumption that m ∼ K, we integrate over γ (assum-
ing flat P(γ)) from some minimal value γ0 to some upper bound that 
we set to ∞. Our prior is now
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The full prior therefore becomes
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