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Abstract

Wearable accelerometers provide an objective measure of human physical activity. They record 

high frequency unlabeled three-dimensional time series data. We extract meaningful features from 

the raw accelerometry data and based on them develop and evaluate a classification method for the 

detection of walking and its sub-classes, i.e. level walking, descending stairs and ascending stairs. 

Our methodology is tested on a sample of 32 middle-aged subjects for whom we extracted features 

based on the Fourier and wavelet transforms. We build subject-specific and group-level 

classification models utilizing a tree-based methodology. We evaluate the effects of sensor location 

and tuning parameters on the classification accuracy of the tree models. In the group-level 

classification setting, we propose a robust feature inter-subject normalization and evaluate its 

performance compared to unnormalized data. The overall classification accuracy for the three 

activities at the subject-specific level was on average 87.6%, with the ankle-worn accelerometers 

showing the best performance with an average accuracy 90.5%. At the group-level, the average 

overall classification accuracy for the three activities using the normalized features was 80.2% 

compared to 72.3% for the unnormalized features. In summary, a framework is provided for better 
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use and feature extraction from raw accelerometry data to differentiate among different walking 

modalities as well as considerations for study design.
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1 Introduction

The use of wearable accelerometers in public health research of physical activity (PA) has 

become increasingly popular. Unlike subjective methods, such as the widely used self-report 

questionnaires, wearable accelerometers offer a non-invasive objective measure of a person’s 

PA. While subjective and objective methods may provide similar results with regard to 

qualitative findings for age and gender (e.g., males more active than females), the adherence 

to PA guidelines determined from accelerometers is substantially lower than from self-report 

[Troiano et al (2008)]. Furthermore, detailed quantification of PA attributable to specific 

activities is quite challenging and remains an elusive goal of PA monitoring research 

[Straczkiewicz et al (2016)]. Body acceleration is believed to be a valuable proxy for PA in 

the free-living environment. However, the usual method for describing accelerometer-

measured PA is to use activity counts and a cut-point approach which classifies intensities of 

PA rather than the specific activity occurring [Veltink et al (1996);Esliger et al (2011);Zhang 

et al (2012);Straczkiewicz et al (2016)].

While use of accelerometers to assess PA may improve estimates for duration of time spent 

in activities of various intensities relative to self-report, the current methods may provide 

biased estimates of energy expenditures (EE). Activity counts are summarized over a given 

window, and then, they are compared to preset thresholds to determine whether a subject 

was engaged in sedentary, light, moderate, or vigorous PA. These methods are unable to 

differentiate between activities that produce similar total acceleration over time but that have 

differing EE [Pober et al (2006)]. For example, walking on a level surface and ascending 

stairs may produce similar levels of total acceleration, but the EE from ascending stairs is 

nearly double that of walking on a level surface [Campbell et al (2002)]. In fact, the relative 

metabolic rate of ascending stairs can be nearly five times that of walking on level ground 

depending on the speed of walking [Ohtaki et al (2005)]. Therefore, even short bouts of stair 

climbing can be an important distinction when considering an individual’s overall EE 

throughout a given day. Although these cut-point methods are primarily used to summarize 

the raw accelerometry data, information about the structure of the data which may be pivotal 

to differentiating between activities is lost [Mannini et al (2013)]. Recent literature has 

attempted to address this problem using a signal processing approach. The Fast Fourier 

Transform (FFT) and discrete wavelet transform (DWT) have previously been used to 

develop more detailed feature sets for classification of different activity types [Zhang et al 

(2012)]. One disadvantage of the FFT is that information is lost from the time domain. The 

DWT addresses this problem by providing information in both the time and frequency 

domains, but due to the high dimensionality of the raw accelerometry data structure, 

implementing a windowing approach is still an attractive option. The short-time Fourier 
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transform (STFT) can then be implemented within a localized window recapturing the time 

information. However, this approach requires the choice of an appropriate window size be 

made Preece et al (2009);Urbanek et al (2018).

The windowing approach to data segmentation is common throughout the accelerometry 

literature. It has been demonstrated that smaller windows provide faster activity detection 

and computing time, but larger windows tend to perform better in the recognition of more 

complex activities [Banos et al (2014)]. There are no clear-cut rules when it comes to 

choosing window length, but it is important to consider the application prior to making a 

choice as some shorter activities could be obscured by noise in larger windows and longer 

activities may not be fully captured in shorter windows. Banos et al (2014) attempted to 

address this problem with an extensive study of the impact of window length on activity 

recognition. Although they conclude a window size of 1-2s provides the best trade-off 

between recognition speed and accuracy, their feature set consisted only of simple metrics 

such as mean, standard deviation, minimum, maximum, and mean crossing rate. When the 

interest lies in differentiation among similar activities such as walking and stair climbing, 

more detailed features must be implemented which require larger window sizes for higher 

resolution of spectral features.

In this paper, we describe the Indiana University Walking and Driving Study (IUWDS) that 

was designed to collect accelerometry data for walking, stair climbing, and driving in a 

simulated free-living environment. The study consisted of two separate trials, a walking trial 

and a driving trial. Figure 1 displays the raw accelerometry data from a single participant 

during the walking trial. Each subject was asked to complete five periods of walking on level 

ground and six periods, each, of ascending and descending stairs. All participants were 

instructed to perform each task at their usual pace to simulate data collected in a free-living 

environment. Using the complete data from both walking and driving trials, we were able to 

show that we can accurately differentiate between walking activities and driving with high 

accuracy [Straczkiewicz et al (2016)]. Therefore, the focus of this paper is on differentiating 

between the three walking modalities. Prior to any modelling, pre-processing steps were 

undertaken to extract meaningful information from the raw triaxial accelerometry data. 

Using a windowing approach, we extract features of the data from both the time and 

frequency domains. Most of the chosen features provide either a measure of the energy 

exerted from certain activities or measures of periodicity from the signal, and half of the 

features were derived from the FFT and DWT. Finally, extracted features are used to build 

classification trees at both the subject and population level. The classification tree was 

chosen because it has been shown to provide good classification of PA types [Bao and Intille 

(2004);Kwapisz et al (2011);Zhang et al (2012); Ellis et al (2016)]. Classification trees also 

provide an interpretable model that can be used to inform subsequent association studies as 

to which relevant features may be useful in modelling certain health related outcomes. The 

classification models were built under varying combinations of sensor location and window 

length. Model evaluation was performed to assess the impact of sensor location and window 

length on the classification accuracy for each of the three walking modalities.

The rest of this paper is organized as follows. In Section 2, we describe the data collection 

and labelling methods for the raw accelerometry data. In Section 3, we describe the signal 
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processing used to extract relevant features from the raw data. In Section 4, we describe the 

classification model and subsequent statistical models used to evaluate the properties of the 

classification models. In Section 6, we describe the results of classification and the impact of 

differing window sizes and sensor location on those results, and we also describe the 

features found to be most important for differentiation of the walking modalities. In Section 

7, we provide a brief description of the study results and future research.

2 Data collection

Thirty-two adults (13 men, 19 women) participated in the IUWDS study. The data collected 

was used to identify patterns of walking, stair climbing, and driving from raw accelerometry 

data. The study was approved by the Institutional Review Board of Indiana University; all 

participants provided written informed consent. Participants wore four ActiGraph GT3X+ 

accelerometers: one on the left ankle, one on the right ankle, one on the left hip, and one on 

the left wrist. All four devices were synchronized to the same external clock providing 

parallel measurement at a sampling frequency of 100Hz (i.e., 100 observations per second) 

for the four body locations. Each device was attached using velcro bands. The ankle 

accelerometers were worn on the outside of the ankles. The wrist accelerometer was worn 

similar to a regular watch on the top of the left wrist. The hip accelerometer was attached to 

the belt of the participant on the left hip, but when a belt was not available, the device was 

either attached to the corresponding belt loop or clipped to the waistband. Data were 

downloaded immediately following each participant’s session. A human observer recorded 

the starting and stopping times for the walking study. All devices were initialized and data 

were downloaded using the manufacturer’s software (ActiLife version 6.12.0) [http://

actigraphcorp.com]. Table 1 contains demographic information for the study participants. 

Thirty-one of the participants were right handed while the remaining individual identified 

himself as ambidextrous. The study included a walking trial (approximately 0.66 miles) 

followed by a driving trial (approximately 12.8 miles). The walking trial included walking 

on level ground, ascending stairs, and descending stairs. Immediately after the walking 

period, participants were accompanied to their vehicle, and they then drove on a predefined 

route that included both highway and city driving. The walking trial lasted between 9.0 and 

13.5 minutes while the driving trial lasted between 18 and 30 minutes, depending on traffic.

The data collection protocol requested participants to walk at their usual pace along a 

predefined course to simulate free-living activities. Our prior experience has demonstrated 

the inaccuracy of human observers labelling activities. In order to ensure accuracy of the 

starting and stopping times for different activities, participants were asked to clap three 

times at the beginning and end of each activity internally marking the raw accelerometry 

data for the wrist with three consecutive spikes in the signal. Using these internal markings 

within the data, we were able to accurately assign activity labels for each section of the 

protocol. Once the activity labels were assigned, the clapping signal ±0.5 second of data 

were deleted to mimic smooth transitions between activities. The walking trial consisted of 

five periods of walking on level ground, six periods of descending stairs, and six periods of 

ascending stairs. The data from one participant included an additional period of walking on 

level ground due to the participant briefly forgetting the instructions before turning around to 
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ascend the stairs. For the purposes of this paper, we focus strictly on data from the walking 

trial collected at the four sensor locations.

3 Signal processing

For each participant, we assume that we can identify periods of walking by utilizing the 

algorithm developed by Urbanek et al (2018) so we select only the walking trial data. Their 

method uses a frequency analysis approach to detect periodic activity within windowed 

portions of the raw triaxial accelerometry signal. They compute a ratio of the area of interest 

to the total area under the spectrum obtained by FFT that indicates periodic activity when 

this ratio exceeds a pre-specified threshold. This ratio (ratio.VM) is described in more detail 

below.

We consider the triaxial signal x(t) = {x(t),y(t),z(t)} where x(t), y(t), and z(t) are the 

measurements along the three orthogonal axes of the device at time t. Participants walking 

while swinging their arm change the orientation of the wrist worn device with respect to 

earth’s gravity which directly affects the measurement in each axis [Bai et al (2012); He et al 

(2014); Xiao et al (2016); Straczkiewicz et al (2016)]. In order to remove the effects of 

sensor orientation, we consider the vector magnitude, VM, where the vector magnitude at 

time t is defined as:

vm t = x t 2 + y t 2 + z t 2 (1)

For feature extraction, we then use a sliding window approach to divide the signal into 

windows of 2.56, 5.12, and 10.24 seconds providing 256, 512, and 1024 samples per 

window (i.e. 2.56s × 100Hz = 256 samples), respectively. We use a set of windows of 

varying lengths in order to evaluate the impact of window size on feature importance and 

classification accuracy. Window sizes were chosen to ensure the number of samples in each 

window was a power of 2 to simplify computation of FFT and DWT and avoid the need for 

zero-padding. In addition, the smallest window of 2.56s ensures that a gait cycle is repeated 

at least twice. The number of windows analyzed varies by subject due to variability in the 

lengths of time to complete the walking trial. Similar to Zhang et al (2012), we extract 

features in both the frequency and time domains. The frequency domain features are derived 

from the FFT and the DWT of the VM. The thirteen features used are summarized in 2 and 

described in more detail in the following paragraphs. The sliding window FFT is referred to 

as the short-time Fourier Transform (STFT) [Sejdić et al (2009), Urbanek et al (2018), 

Straczkiewicz et al (2016)]. For a window of size τ, centered at time t, the STFT of the 

signal vm(t) is defined as

V M f, t = ∑
u = t − τ/2

t + τ/2
vm u ℎ u e−i2πfu/τ (2)

where f is the frequency index and the weights h(u) assign more weight to observations close 

to t. We use the weights defined by the Hanning window, h(u; τ) = 0.5[1 – cos{2τu/(τ – 

1)}], as they have been shown to reduce aliasing, or a blurring of the spectrum [Harris 
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(1978); Urbanek et al (2018)]. The features extracted from the frequency spectrum of each 

window include: f1, ratio.VM, p1, and p1.TP.

Figure 2 provides a visual description of the features extracted from the FFT. While 

ratio.VM and p1.TP appear similar in concept, p1.TP contrasts the power of each step versus 

the entire spectrum, while ratio.VM contrasts multiple characteristics of walking versus the 

non-walking related portions of the spectrum. In essence, if we consider all relevant human 

movement to occur between 0.3-12.5 Hz, p1.TP is measuring the energy associated with the 

step component of walking versus all other movements within a given window. In contrast, 

ratio.VM is measuring the periodic content relative to the non-periodic content associated 

with the VM signal.

Additionally, we included two DWT features similar to Zhang et al (2012). The DWT of the 

signal vm(t) is calculated from the wd() function in the R package wavethresh. The features 

extracted from the DWT of each window are given by the following equations:

DW T . V M2 = ∑
j = α

β
dj

2/V M2
(3)

DW T . TP = ∑
j = α

β
dj

2/ ∑
j = 1

J
dj

2
(4)

where dj
2 = dj

Tdj is the sum of squared DWT coefficient vector of VM at level j (j = 1, ⋯, J). 

In addition, VM2 is the sum of the squared VM signal in each window. For our purposes, we 

selected α and β to cover the frequency range 0.78-6.25Hz, and J was selected to cover the 

frequency range 0-12.5Hz. When the noise in the signal is negligible, DWT.VM2 and 

DWT.TP are nearly identical.

In addition to the FFT and DWT features, we included the vector magnitude count, VMC, 

which Urbanek et al (2018) and Straczkiewicz et al (2016) defined as

V MC(t) = 1/τ ∑
u = t − τ/2

t + τ/2
|vm(u) − 1/τ ∑

u = 1

τ
vm(u)| (5)

where VMC(t) is the VMC for the window of length τ centered at t and four features derived 

from the raw triaxial signal: activity intensity (Act.Int = (sx + sy + sz)/3), CORR.XY, 

CORR.XZ, and CORR.YZ. We define CORR.XY, CORR.XZ, and CORR.YZ as the 

Pearson correlation coefficient between the respective axes, and sx, sy, and sz are the 

standard deviations of the x, y, and z axes of the accelerometry signal, respectively. The 

mean and standard deviation of the VM were included as the final two time domain features 

and defined as

Mean . V M(t) = 1
τ ∑

u = t − τ/2

t + τ/2
vm(u) (6)
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and

SD . V M(t) = 1
τ − 1 ∑

u = t − τ/2

t + τ/2
vm(u) − Mean . V M(t) 2

(7)

3.1 Feature normalization

Before fitting any population level classification model, it is important to normalize features 

at the subject level. As Xiao et al (2016) demonstrated, accelerometry data is not directly 

comparable across subjects. Figure 3 illustrates these subject to subject differences for the 

VM for a 10.24 second window of each walking activity for two subjects from our study. 

While the measured acceleration appear similar in nature, we can see that the magnitude of 

the signal for each activity is different across the two subjects. In addition, we also observe 

that the magnitude of the signal for descending stairs is the highest followed by level 

walking and then ascending stairs. Hence our motivation for normalization is to normalize 

all features to walking. The usual standardization simply centers data around the mean of the 

distribution and scales by the overall standard deviation. A reasonable assumption that we 

make is that level walking is the overwhelmingly dominant type of walking for the vast 

majority of human physical activity. Therefore, we employ a simple, yet novel normalization 

scheme of centering each feature around the median value and scaling by the median 

absolute deviation (MAD). For a feature w, calculate a pseudo z-score as

z* = w − median(w)
MAD(w) (8)

where MAD(w) = 1.4826 * median|wi — median(w)| and is calculated using a built in 

function in the R statistical software (https://stat.ethz.ch/R-manual/R-devel/library/stats/

html/mad.html). We make the assumption that level walking is the most common type of 

walking for everybody. In addition, we have observed that the magnitude of individuals’ 

accelerometry signals is lowest for ascending stairs, followed by level walking, and then 

descending stairs. Combining these two assumptions, we can reasonably assume that the 

median for each of the features extracted (excluding the correlation features) would be 

representative of level walking. Standardizing the features in this way ensures that each z-

score can be interpreted as a deviation from level walking.

4 Classification Model

All data management and modelling was performed using RStudio version 0.99.467 

[RStudio Team (2015)]. Zhang et al (2012) showed that many machine learning algorithms 

provide satisfactory classification results, but the classification trees and support vector 

machine provide the best results. We chose classification trees for modeling the three types 

of walking activities due to their interpretability and ability to handle correlated predictors. 

We are interested in an interpretable model so that we can further understand what features 

are important for differentating between the three activities. This understanding of important 

features will help to inform subsequent statistical analyses of walking features with relation 

to health related outcomes. The classification tree methodology from the R package rpart 
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[Therneau et al (2015); Therneau and Atkinson (2015)] was used for the training and testing 

of our classification models. In both subject- and population-level classification, our data 

followed a similar structure where the response variable was Activity defined as a factor 

with three levels associated with walking on level ground, descending stairs, and ascending 

stairs. We use the thirteen features described in Section 3 as predictors in our models.

4.1 Subject-level classifier

We built a classification tree for each of our 32 subjects under the 12 combinations of 

window length (2.56, 5.12, and 10.24 seconds) and sensor location (left hip, left wrist, left 

ankle, and right ankle). In order to evaluate the performance of each classifier, cross-

validation (CV) was implemented to investigate the classification accuracy of each model. 

To avoid over-training the classifier to identify a single activity (i.e., walking), we identified 

the activity with the fewest number of observations and chose 60% of that number, nmin, for 

the size of our training sets from each activity. All remaining observations were used for 

testing. This process was repeated 100 times for each subject under each scenario and the 

confusion matrix from the CV was used to evaluate the performance of each model. We fit a 

final tree for each participant using all data and assigning a uniform class prior to address the 

imbalance in the three activities.

4.2 Population-level classifier

The classification tree described in Section 4.1 was focussed on within-subject classification. 

Now, we will extend that methodology to the population level. For the population-level 

classifier, we considered the same 12 combinations of window length and sensor location as 

in Section 4.1, but we built a single model from all 32 subjects. Again, we used CV to 

evaluate the performance of the models, but in this case, we split our data into training sets 

consisting of all data from 20 randomly chosen subjects and tested on the remaining 

subjects. Each model was fit using uniform class priors to address the imbalance in the three 

activities as was done on the final subject-level models in the previous section. In addition, 

to avoid overtraining the classifier to the subjects used in the training sets, each model was 

pruned using the 1-SE rule [Therneau and Atkinson (2015)]. The model was then tested on 

the remaining subjects’ data, and this process was repeated 100 times under each scenario. 

Final models were fit to all subjects’ data using uniform class priors as before.

In addition to the models based on one sensor at a fixed window length, we evaluated the 

usefulness of combining information from the wrist and hip worn sensors to see if the 

combined information would improve classification accuracy. Due to concerns about 

compliance in larger studies, we only chose to combine wrist and hip worn sensors as these 

are most likely to encourage higher compliance over ankle worn sensors.

4.3 Model evaluation

The accuracy of each classification model was evaluated using the following metrics:

– Sensitivity = Recall = True Positive Rate (TPR) = TP
TP + FN

– Specificity = True Negative Rate (TNR) = TN
TN + FP
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– Positive Predictive Value (PPV) = Precision = TP
TP + FP

– F1 score = 2 ∗ PPV ∗ Sensitivity
PPV + Sensitivity

True positives (TP) are defined as the number of windows in a given class that are correctly 

classified (e.g. classifying walking as walking). False positives (FP) are defined as the 

number of windows classified to given class, but they actually belong to a different class 

(e.g. classifying walking as descending stairs). True negatives (TN) are defined as the 

number of windows from a given class that are not classified as a different class (e.g. the 

number of windows for ascending and descending stairs that are not classified as walking). 

False negatives (FN) are defined as the number of windows in a given class that are 

classified to something else (e.g. the number of windows of walking that are classified to 

ascending or descending stairs). The above measures are defined for classification of one 

walking modality versus the other two.

In addition to classification accuracy, we evaluated the feature set to identify which 

predictors provided the best separation of the three walking activities. At each iteration, a 

ranking of variable importance was obtained and averaged across the 100 iterations per 

subject for the subject-level classifier. For the population-level classifier, each iteration 

represents an observation used for evaluation. The rankings range from 1 to 13, where 1 is 

the most important predictor and 13 is the least important.

For the subject-level classifiers, linear mixed models (LMM) were used to evaluate the 

effects of window size and sensor location on the classification accuracy for the three 

activities. Least-squares means were evaluated for multiple comparisons using a Tukey 

adjusted p-value.

5 Computational considerations

An important factor as to whether this method is scalable to larger studies is the time it takes 

to process the signal and train our model. We will consider average computing time for our 

study and scale these number up to the usual one to two week data collection. For the signal 

processing and feature extraction, the average computing time was around 35 seconds for 

the walking trial data. The average length of the walking trials were right around 11.5 

minutes for males and females in the study. Therefore, we could reasonably expect the 

processing time for one week of data (10,080 minutes) collected at 100Hz to take 

(10,080/11.5) * 35 ≈ 30,678 seconds (or around 8.5 hours). Computing time was around 75 

seconds to fit the population level model including training and testing with cross-validation. 

These models are computationally fast to fit, and we would not anticipate a drastic increase 

in the computational time with larger studies. Indeed, the added computation time would be 

at the signal processing level. All processing was performed in Windows 10 Enterprise on an 

Intel(R) Core(TM) i7-6700 CPU at 3.4GHz with 16GB of RAM on a 64-bit windows 

operating system.
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6 Results

We applied the classification trees described in Section 4 to the walking trial data for the 32 

participants in the IUWDS. As described in Section 2, data were collected from sensors 

placed at the left hip, left wrist, left ankle, and right ankle. Participants were instructed to 

walk at their usual pace along a predefined course that included walking on level ground, 

ascending stairs, and descending stairs. The clapping periods used to internally mark the 

beginning and end of each activity type were removed from the raw signal in order to mimic 

smooth transitions between activities. Prior to modelling, the raw data were preprocessed 

using the methods described in Section 3. Twelve classification trees were built for each 

participant and at the population level using the data collected from the 4 sensor locations 

and 3 window sizes (2.56s, 5.12s, and 10.24s). In addition, we built classification trees 

combining features extracted from left hip and left wrist for ech of the 3 window sizes. 

Training and testing data were constructed using the CV method described in Section 4. We 

evaluate each classifier in terms of sensitivity, specificity, PPV, and F1 score. Feature 

evaluation was performed to assess the average importance ranking of each feature included 

in the model.

6.1 Subject-level model evaluation

Figure 4 shows the results of the activity classification problem in terms of boxplots for the 

sensitivity, specificity, PPV and F1 score for all participants obtained from models built 

under each of the 12 window length and sensor location scenarios. We observed shorter 

window lengths and data collected at the wrist yield the lowest classification accuracy while 

larger windows and data collected at the ankles yield the highest classification accuracy. 

However, it appears from the top left panel of Figure 4 that there are differences in these 

trends for descending stairs. For descending stairs, the levels of sensitivity seem to be 

constant across window sizes for data collected from the left wrist and outperform the data 

collected from the hip. For the shorter window lengths (2.56 and 5.12 seconds), the 

sensitivity for the data collected from the wrist is higher than for the data collected at the 

hip.

We investigate the impact of sensor location and window length on the classification 

accuracy using LMMs. The main takeaways from the analyses showed that classification 

accuracy is highest when data are collected from the ankle worn sensors, but the hip and 

wrist worn sensors still provide useful information. Increasing the window size from 5.12 to 

10.24 seconds provides only marginal improvements in the classification of level walking 

while the classification of stair climbing is best observed using the 5.12 second windows. 

More detailed results from these models can be found in Appendix A.

6.2 Population-level model evaluation

Figure 5 shows the sensitivity and specificity obtained through CV for the 12 classification 

models for both normalized and raw feature models. Because of the imbalance in the three 

activities, we observe very high sensitivity for walking, but we observe much lower 

sensitivity for ascending and descending stairs regardless of sensor location and window 

size. In addition, we see the normalized features outperform the raw features in nearly every 
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scenario. Figure 6 shows the PPV and F1 score for the 12 classification models for both the 

normalized and non-normalized feature models. Again, we notice the normalized features 

results are nearly always better than the results obtained using the raw features. Similar to 

what we observed at the subject-level, walking on level ground is the easiest activity to 

identify among the three types of walking, but it is also the most prevalent activity by a large 

margin. Instead, if we focus on the PPV in the top panel of Figure 6, we observe that the 

PPV is higher for left wrist versus left hip for descending stairs while the relationship is 

reversed (i.e., left hip higher than left wrist) for ascending stairs. The left and right ankles 

yield nearly identical results in terms of model performance.

When combining information from the hip- and wrist-worn sensors, the most notable 

benefits are in the accuracy of classifying ascending and descending stairs. When using only 

the hip- or wrist-worn sensors for classification, descending stairs was poorly identified for 

the hip-worn data (ranging from 56% to 66% accuracy for the 3 window sizes) and 

ascending stairs was poorly identified for the wrist-worn data (ranging from 56% to 63% 

accuracy for the 3 window sizes). When combining information from these two locations, 

the accuracy for descending stairs is between 70% and 74% and the accuracy for ascending 

stairs is between 67% and 71%. The most balanced classification using the combined 

information is for the 5.12 second window length. This is understandable since climbing 

stairs tends to be a shorter activity and larger window sizes may introduce noise that makes 

it difficult to differentiate between level walking and stair climbing.

6.3 Feature evaluation

Figure 7 shows the distributions of the feature importance rankings for the subject-level 

classifiers with differing window lengths and sensor locations. For features extracted from 

the wrist data, we see consistently across all window sizes, the top five most important 

features are SD.VM, VMC, DWT.VM2, Act.Int, and p1 implying features that measure 

changes in the intensity of the acceleration are best at differentiating between types of 

walking from wrist worn devices. The same five features are also ranked most important for 

the hip data with 2.56s windows. The hip data with 5.12s windows includes those same 

features in the top six important features but also include Corr.XY with a large amount of 

variability in importance between subjects. When data is collected at the hip and 10.24s 

windows are used, the most important feature becomes ratio.VM implying improved 

resolution of the FFT spectrum improves classification. The top two features most important 

for both the left and right ankle data with 2.56s windows are Mean.VM and p1. Consistently, 

p1 and p1.TP appear in the top three most important features for the ankle data with 5.12s 

and 10.24s windows which implies the amplitude of f1 plays a significant role in 

differentiating between types of walking when data are collected from the ankle.

Figure 8 shows the feature importance for the 12 scenarios of window length and sensor 

location for the population-level classifiers. Similar to what we observed at the subject level, 

we see that for data collected from the left wrist, the most important features are those 

features which measure the variation in measured acceleration (i.e. SD.VM, VMC, 
DWT.VM2, Act.Int, and p1). For the data collected at the hip, the same five features are 

ranked the highest with exception that ratio.VM becomes the most important variable for 
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window lengths of 10.24 seconds. Again, this is most likely attributable to the need for 

higher resolution of the walking spectra before ratio.VM can be accurately measured. 

Consistently, p1 and p1.TP are ranked highly for the models built from ankle data. This is 

consistent with our previous findings at the subject level, and indicate the magnitude of the 

walking spectra at the dominant frequency is quite useful for differentiating between types 

of walking when data is collected at the ankle.

7 Discussion

We have proposed a classification tree-based method for differentiating between walking on 

level ground, ascending stairs, and descending stairs using accelerometry data. Relevant 

features were extracted from the raw data using a combination of frequency analysis features 

and time domain features and a range of window sizes (e.g., 2.56, 5.12, and 10.24 seconds). 

In Section 6.1, we showed that we can achieve very good classification results using the 

proposed methods for classification within subjects. In Section 6.2, we took a step forward 

in trying to build a population level classification model under a number of window size and 

sensor location combinations and proposed a novel normalization of features to standardize 

all activities to walking.

The within-subject methods described in Section 4.1 are more accurate, but in larger scale 

studies, it may not be feasible to obtain training data for every subject. The population-level 

models detailed in Section 4.2 serve as an important step towards our ultimate goal of 

building a reliable classification model. We showed that a novel, yet simple, normalization 

of the features can improve between subject classification results in nearly all scenarios and 

activities.

The data from the IUWDS was collected in a simulated free-living environment from 

relatively healthy adults ranging in age from 23 to 54 years. The large heterogeneity in the 

study population, with respect to age, BMI, and gender, enhances the generalizability of our 

results. A next step for this research will certainly include conducting similar analyses in 

smaller groups of more homogeneous individuals to assess the accuracy of additional 

population specific models. In addition to creating classifiers for more homogeneous groups, 

more sophisticated normalization techniques, or combinations of techniques, may improve 

the accuracy of the proposed models.
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A: Supplemental results tables

Table 3:

LS means of sensitivity for sensor location by activity for the subject-level classifiers.

Sensor Location Activity Mean Lower CL Upper CL

Left Wrist Ascending 0.844 0.829 0.858

Left Wrist Walking 0.852 0.837 0.866

Left Hip Descending 0.863 0.849 0.877

Left Hip Ascending 0.869 0.855 0.883

Left Wrist Descending 0.874 0.859 0.888

Right Ankle Ascending 0.885 0.870 0.899

Left Ankle Descending 0.888 0.874 0.903

Left Ankle Ascending 0.889 0.875 0.904

Right Ankle Descending 0.889 0.875 0.904

Left Hip Walking 0.900 0.885 0.914

Left Ankle Walking 0.938 0.924 0.953

Right Ankle Walking 0.939 0.925 0.954

1
Groups with similar numbers are not significantly different from each other.

Table 4:

LS means of sensitivity for window length by activity for the subject-level classifiers.

Window Length Activity Mean Lower CL Upper CL

2.56s Ascending 0.855 0.841 0.868

2.56s Descending 0.855 0.842 0.869

10.24s Ascending 0.876 0.862 0.889

2.56s Walking 0.879 0.865 0.892

5.12s Ascending 0.885 0.871 0.898

5.12s Descending 0.889 0.876 0.903

10.24s Descending 0.891 0.878 0.905

5.12s Walking 0.914 0.901 0.927

10.24s Walking 0.929 0.916 0.942

Table 5:

LS means of overall classification accuracy for sensor location for the subject-level 

classifiers.

Sensor Location Mean Lower CL Upper CL

Left Wrist 0.856 0.845 0.868

Left Hip 0.877 0.865 0.889

Right Ankle 0.904 0.893 0.916

Left Ankle 0.905 0.894 0.917
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Table 6:

LS means of overall classification accuracy for window length for the subject-level 

classifiers.

Window Length Mean Lower CL Upper CL

2.56s 0.863 0.852 0.874

5.12s 0.896 0.885 0.907

10.24s 0.899 0.887 0.910
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Fig. 1: 
Triaxial raw accelerometry data for Subject 14 during the walking trial. Each panel 

represents different sections of the walking trial, and the red, blue, and green lines represent 

the acceleration measured from the three axes. The top left panel contains data from the first 

segment of walking on level ground from the start of the trial to the first set of stairs. The top 

middle panel represents the first set of stairs where the participant descended the stairs, 

ascended the stairs, and descended the stairs again prior to proceeding into walking on the 

second walking section (top right panel).
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Fig. 2: 
Fourier spectrum (left) and power spectrum (right) with shaded regions describing the 

features derived from the FFT. In the figure on the left, the shaded region represents the 

numerator of ratio.VM, and the dominant frequency is labeled as f1. In the figure on the 

right, the shaded region represents p1.
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Fig. 3: 
Vector magnitude for 10.24s windows of level walking (top row), descending stairs (middle 

row), and ascending stairs (bottom row) for Subject 14 (left column) and Subject 20 (right 

column).
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Fig. 4: 
Boxplots for sensitivity (top left), specificity (top right), PPV (bottom left), and F1 score 

(bottom right) across participants by activity, sensor location, and window length for the 

subject-level classifiers.
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Fig. 5: 
Sensitivity and specificity by activity, sensor location, and window length for the population-

level classifiers.
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Fig. 6: 
Positive predictive value and F1 score by activity, sensor location, and window length for the 

population-level classifiers.
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Fig. 7: 
Variable importance rankings for the twelve scenarios for the subject-level classifiers. 

Variables are sorted from top to bottom by median importance rank.
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Fig. 8: 
Variable importance rankings for the twelve scenarios for the population-level classifiers. 

Variables are sorted from top to bottom by median importance rank.
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Table 1:

Study Demographics

Gender N Statistic Mean St. Dev. Min Max

Female 19 Age (y) 39.3 8.9 24.0 54.0

Height(in) 65.8 3.7 58.0 73.0

Weight(lbs) 143.0 32.1 100.0 212.0

BMI (kg/m2) 23.2 4.9 17.7 33.3

Walk Time (mm:ss) 11:36 01:11 09:01 13:49

Male 13 Age (y) 38.6 9.5 23.0 52.0

Height(in) 72.0 2.0 70.0 76.0

Weight(lbs) 208.7 47.3 140.0 310.0

BMI (kg/m2) 28.2 5.5 20.1 39.8

Walk Time (mm:ss) 11:31 00:58 09:47 13:01
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Table 2:

Features extracted for walking classification

Feature Description Domain

f 1 the dominant frequency between 1.2-4.0 Hz providing an estimate of the cadence (steps/second) Frequency

ratio.VM ratio of the partial area under the spectrum related to periodic movement to the complement Frequency

p1 partial area under the power spectrum at f 1 Frequency

p1.TP ratio of p1 to the total area under the power spectrum between 0.3-12.5 Hz Frequency

DWT.VM2 ratio of energy related to walking versus the total energy of the accelerometry signal Frequency

DWT.TP ratio of energy related to walking versus the total energy related to human movement Frequency

VMC vector magnitude count defined as the mean absolute deviation of the VM Time

CORR.XY correlation between the x- and y-axes of the accelerometry signal Time

CORR.XZ correlation between the x- and z-axes of the accelerometry signal Time

CORR.YZ correlation between the y- and z-axes of the accelerometry signal Time

Act.Int activity intensity defined as the average of the standard deviations for the x-, y-, and z-axes from the accelerometry 
signal

Time

Mean.VM mean of the vector magnitude Time

SD.VM standard deviation of the vector magnitude Time
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